0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

10个重要的回归问题和5个重要的回归问题的评价指标

Dbwd_Imgtec 来源:机器学习研习院 作者:机器学习研习院 2022-11-07 11:29 次阅读

回归分析为许多机器学习算法提供了坚实的基础。在这篇文章中,我们将总结 10 个重要的回归问题和5个重要的回归问题的评价指标。

1、线性回归的假设是什么?

线性回归有四个假设

线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。

独立性:特征应该相互独立,这意味着最小的多重共线性。

正态性:残差应该是正态分布的。

同方差性:回归线周围数据点的方差对于所有值应该相同。

2、什么是残差,它如何用于评估回归模型?

残差是指预测值与观测值之间的误差。它测量数据点与回归线的距离。它是通过从观察值中减去预测值的计算机。

残差图是评估回归模型的好方法。它是一个图表,在垂直轴上显示所有残差,在 x 轴上显示特征。如果数据点随机散布在没有图案的线上,那么线性回归模型非常适合数据,否则我们应该使用非线性模型。

6ad0223c-5e4b-11ed-a3b6-dac502259ad0.png

3、如何区分线性回归模型和非线性回归模型?

两者都是回归问题的类型。两者的区别在于他们训练的数据。

线性回归模型假设特征和标签之间存在线性关系,这意味着如果我们获取所有数据点并将它们绘制成线性(直线)线应该适合数据。

非线性回归模型假设变量之间没有线性关系。非线性(曲线)线应该能够正确地分离和拟合数据。

6adf6328-5e4b-11ed-a3b6-dac502259ad0.png

找出数据是线性还是非线性的三种最佳方法 -

残差图

散点图

假设数据是线性的,训练一个线性模型并通过准确率进行评估。

4、什么是多重共线性,它如何影响模型性能?

当某些特征彼此高度相关时,就会发生多重共线性。相关性是指表示一个变量如何受到另一个变量变化影响的度量。

如果特征 a 的增加导致特征 b 的增加,那么这两个特征是正相关的。如果 a 的增加导致特征 b 的减少,那么这两个特征是负相关的。在训练数据上有两个高度相关的变量会导致多重共线性,因为它的模型无法在数据中找到模式,从而导致模型性能不佳。所以在训练模型之前首先要尽量消除多重共线性。

5、异常值如何影响线性回归模型的性能?

异常值是值与数据点的平均值范围不同的数据点。换句话说,这些点与数据不同或在第 3 标准之外。

6af206fe-5e4b-11ed-a3b6-dac502259ad0.png

线性回归模型试图找到一条可以减少残差的最佳拟合线。如果数据包含异常值,则最佳拟合线将向异常值移动一点,从而增加错误率并得出具有非常高 MSE 的模型。

6、什么是 MSE 和 MAE 有什么区别?

MSE 代表均方误差,它是实际值和预测值之间的平方差。而 MAE 是目标值和预测值之间的绝对差。

MSE 会惩罚大错误,而 MAE 不会。随着 MSE 和 MAE 的值都降低,模型趋向于一条更好的拟合线。

7、L1 和 L2 正则化是什么,应该在什么时候使用?

机器学习中,我们的主要目标是创建一个可以在训练和测试数据上表现更好的通用模型,但是在数据非常少的情况下,基本的线性回归模型往往会过度拟合,因此我们会使用 l1 和l2 正则化。 L1 正则化或 lasso 回归通过在成本函数内添加添加斜率的绝对值作为惩罚项。有助于通过删除斜率值小于阈值的所有数据点来去除异常值。

L2 正则化或ridge 回归增加了相当于系数大小平方的惩罚项。它会惩罚具有较高斜率值的特征。

l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。

8、异方差是什么意思?

它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。

数据内部异方差的最大原因之一是范围特征之间的巨大差异。例如,如果我们有一个从 1 到 100000 的列,那么将值增加 10% 不会改变较低的值,但在较高的值时则会产生非常大的差异,从而产生很大的方差差异的数据点。

9、方差膨胀因子的作用是什么的作用是什么?

方差膨胀因子(vif)用于找出使用其他自变量可预测自变量的程度。

让我们以具有 v1、v2、v3、v4、v5 和 v6 特征的示例数据为例。现在,为了计算 v1 的 vif,将其视为一个预测变量,并尝试使用所有其他预测变量对其进行预测。 如果 VIF 的值很小,那么最好从数据中删除该变量。因为较小的值表示变量之间的高相关性。

10、逐步回归(stepwise regression)如何工作?

逐步回归是在假设检验的帮助下,通过移除或添加预测变量来创建回归模型的一种方法。它通过迭代检验每个自变量的显著性来预测因变量,并在每次迭代之后删除或添加一些特征。它运行n次,并试图找到最佳的参数组合,以预测因变量的观测值和预测值之间的误差最小。

它可以非常高效地管理大量数据,并解决高维问题。

11、除了MSE 和 MAE 外回归还有什么重要的指标吗?

6b09d298-5e4b-11ed-a3b6-dac502259ad0.png

我们用一个回归问题来介绍这些指标,我们的其中输入是工作经验,输出是薪水。下图显示了为预测薪水而绘制的线性回归线。

6b2499a2-5e4b-11ed-a3b6-dac502259ad0.png

1、平均绝对误差(MAE):

6b324426-5e4b-11ed-a3b6-dac502259ad0.png

平均绝对误差 (MAE) 是最简单的回归度量。它将每个实际值和预测值的差值相加,最后除以观察次数。为了使回归模型被认为是一个好的模型,MAE 应该尽可能小。MAE的优点是:简单易懂。结果将具有与输出相同的单位。例如:如果输出列的单位是 LPA,那么如果 MAE 为 1.2,那么我们可以解释结果是 +1.2LPA 或 -1.2LPA,MAE 对异常值相对稳定(与其他一些回归指标相比,MAE 受异常值的影响较小)。MAE的缺点是:MAE使用的是模函数,但模函数不是在所有点处都可微的,所以很多情况下不能作为损失函数。

2、均方误差(MSE):

6b5207d4-5e4b-11ed-a3b6-dac502259ad0.png

MSE取每个实际值和预测值之间的差值,然后将差值平方并将它们相加,最后除以观测数量。为了使回归模型被认为是一个好的模型,MSE 应该尽可能小。MSE的优点:平方函数在所有点上都是可微的,因此它可以用作损失函数。MSE的缺点:由于 MSE 使用平方函数,结果的单位是输出的平方。因此很难解释结果。由于它使用平方函数,如果数据中有异常值,则差值也会被平方,因此,MSE 对异常值不稳定。

3、均方根误差 (RMSE):

6bee8abe-5e4b-11ed-a3b6-dac502259ad0.png

均方根误差(RMSE)取每个实际值和预测值之间的差值,然后将差值平方并将它们相加,最后除以观测数量。然后取结果的平方根。因此,RMSE 是 MSE 的平方根。为了使回归模型被认为是一个好的模型,RMSE 应该尽可能小。 RMSE 解决了 MSE 的问题,单位将与输出的单位相同,因为它取平方根,但仍然对异常值不那么稳定。

上述指标取决于我们正在解决的问题的上下文, 我们不能在不了解实际问题的情况下,只看 MAE、MSE 和 RMSE 的值来判断模型的好坏。

4、R2 score:

6c14ffa0-5e4b-11ed-a3b6-dac502259ad0.png

如果我们没有任何输入数据,但是想知道他在这家公司能拿到多少薪水,那么我们能做的最好的事情就是给他们所有员工薪水的平均值。

6c362d9c-5e4b-11ed-a3b6-dac502259ad0.png

R2 score 给出的值介于 0 到 1 之间,可以针对任何上下文进行解释。它可以理解为是拟合度的好坏。 SSR 是回归线的误差平方和,SSM 是均线误差的平方和。我们将回归线与平均线进行比较。

6c4da3be-5e4b-11ed-a3b6-dac502259ad0.png

如果 R2 得分为 0,则意味着我们的模型与平均线的结果是相同的,因此需要改进我们的模型。

如果 R2 得分为 1,则等式的右侧部分变为 0,这只有在我们的模型适合每个数据点并且没有出现误差时才会发生。

如果 R2 得分为负,则表示等式右侧大于 1,这可能发生在 SSR > SSM 时。这意味着我们的模型比平均线最差,也就是说我们的模型还不如取平均数进行预测

如果我们模型的 R2 得分为 0.8,这意味着可以说模型能够解释 80% 的输出方差。也就是说,80%的工资变化可以用输入(工作年限)来解释,但剩下的20%是未知的。 如果我们的模型有2个特征,工作年限和面试分数,那么我们的模型能够使用这两个输入特征解释80%的工资变化。R2的缺点:随着输入特征数量的增加,R2会趋于相应的增加或者保持不变,但永远不会下降,即使输入特征对我们的模型不重要(例如,将面试当天的气温添加到我们的示例中,R2是不会下降的即使温度对输出不重要)。

5、Adjusted R2 score:

上式中R2为R2,n为观测数(行),p为独立特征数。Adjusted R2解决了R2的问题。 当我们添加对我们的模型不那么重要的特性时,比如添加温度来预测工资.....

6c5b2b74-5e4b-11ed-a3b6-dac502259ad0.png

当添加对模型很重要的特性时,比如添加面试分数来预测工资……

6c72a8f8-5e4b-11ed-a3b6-dac502259ad0.png

以上就是回归问题的重要知识点和解决回归问题使用的各种重要指标的介绍及其优缺点,希望对你有所帮助。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8418

    浏览量

    132646
  • 线性回归
    +关注

    关注

    0

    文章

    41

    浏览量

    4307

原文标题:机器学习回归模型相关重要知识点总结

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    垂直型回归反射光电开关的原理有哪些E3S-AR61

    垂直型回归反射光电开关的原理是基于光线的反射和光电传感器的检测机制。通过利用这一原理,它可以实现对物体的非接触式检测和控制,为工业自动化和机器人技术等领域提供了重要的技术支持。
    的头像 发表于 12-16 10:23 129次阅读

    绝缘电阻测试的基础以及为什么它如此重要

    绝缘电阻测试的八技巧 绝缘材料是一种能抵抗试图通过它的电流的材料。绝缘体有助于抵抗冲击和短路,使电绝缘成为任何建筑或系统中最重要的部件之一。这也意味着测量电阻特别重要,你必须清楚地了解电阻水平,以
    发表于 12-09 10:24

    Minitab常用功能介绍 如何在 Minitab 中进行回归分析

    Minitab是一款强大的质量管理统计软件,为质量改善、教育和研究应用领域提供统计软件和数据分析工具。以下是对Minitab常用功能的介绍,以及使用Minitab进行回归分析的具体步骤
    的头像 发表于 12-02 15:38 622次阅读

    介绍半导体智能制造中重要指标--WIP

    Hello,大家好,今天我们来聊聊半导体智能制造中重要指标--WIP。 1. WIP的定义 WIP(Work In Process):在制品,指的是在生产制造工艺流程中,处于各个工艺步骤之间的产品
    的头像 发表于 11-16 09:20 1293次阅读
    介绍半导体智能制造中<b class='flag-5'>重要</b>的<b class='flag-5'>指标</b>--WIP

    什么是回归测试_回归测试的测试策略

      1、什么是回归测试 回归测试(Regression testing) 指在发生修改之后重新测试先前的测试以保证修改的正确性。理论上,软件产生新版本,都需要进行回归测试,验证以前发现和修复的错误
    的头像 发表于 11-14 16:44 255次阅读

    聚徽触控-工控机配置重要指标

    工控机配置的重要指标主要包括以下几个方面:
    的头像 发表于 07-12 09:50 252次阅读

    不同类型神经网络在回归任务中的应用

    简单的前馈神经网络。它由输入层、一或多个隐藏层和输出层组成。每个层由多个神经元组成,神经元之间通过权重连接。输入层接收输入数据,隐藏层对数据进行非线性变换,输出层生成预测结果。 基本的神经网络在回归任务中表现良
    的头像 发表于 07-11 10:27 1306次阅读

    谷景科普车规级磁棒电感的重要指标

    大致介绍一下车规级磁棒电感的指标参数: 1、电感值:电感值以亨为单位,分为亨(H)和微亨(uH)。电感值的大小将会对电感在电路中的滤波、震荡和储能产生直接影响。 2、饱和电流:这是车规级磁棒电感一特别重要
    的头像 发表于 04-02 17:48 450次阅读

    一体成型电感重要指标有哪些

    电子发烧友网站提供《一体成型电感重要指标有哪些.docx》资料免费下载
    发表于 04-02 09:02 0次下载

    发展新质生产力,打造橡塑新高地 聚焦“国际橡塑展回归上海启航盛典”

    海举办,线下160多位业界代表以及线上超过10,000位行业人士共同见证、迎接展会即将回归上海,开启乘风破浪、共“塑”未来的新征程。     线下160多位业界代表以及线上超过10,000位行业人士共同见证“国际橡塑展
    的头像 发表于 03-29 15:30 982次阅读
    发展新质生产力,打造橡塑新高地 聚焦“国际橡塑展<b class='flag-5'>回归</b>上海启航盛典”

    深入探讨线性回归与柏松回归

    或许我们所有人都会学习的第一机器学习算法就是线性回归算法,它无疑是最基本且被广泛使用的技术之一——尤其是在预测分析方面。
    的头像 发表于 03-18 14:06 679次阅读
    深入探讨线性<b class='flag-5'>回归</b>与柏松<b class='flag-5'>回归</b>

    评价放大电路的主要性能指标有哪些

    放大电路是电子系统中非常重要的一部分,其主要功能是放大信号以增加其幅度或功率。为了评价放大电路的性能,有几个主要的指标需要考虑。下面将详细介绍这些指标。 增益 增益是放大电路最基本的性
    的头像 发表于 03-09 14:03 2210次阅读

    比较器的噪声主要由谁贡献?为什么比较器的offset是非常重要的一指标

    比较器的噪声主要由谁贡献?为什么比较器的offset是非常重要的一指标? 比较器是电子电路中常用的一组件,主要用于比较两电压或电流的大
    的头像 发表于 01-31 14:48 2295次阅读

    6关于pcb信号线的重要信息

    6关于pcb信号线的重要信息
    的头像 发表于 01-05 10:34 1201次阅读

    示波器最重要的三参数

    示波器的三重要参数是:带宽、采样率、存储深度。1,带宽示波器带宽的定义没有变,就是输入一正弦波,保持幅度不变,增加信号频率,当示波器上显示的信号是实际信号幅度的70.7%(即3dB衰减)的时候
    的头像 发表于 01-01 08:00 5497次阅读
    示波器最<b class='flag-5'>重要</b>的三<b class='flag-5'>个</b>参数