0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

缓存分区可提高安全关键型多核应用程序的CPU利用率

星星科技指导员 来源:嵌入式计算设计 作者:TIM KING 2022-11-08 14:24 次阅读

缓存分区减少了关键任务的最坏情况下的执行时间,从而提高了 CPU 利用率,尤其是对于多核应用程序。

多核处理器 (MCP) 的可认证、安全关键型软件应用程序的开发人员面临的最大挑战之一是管理对共享资源(如缓存)的访问。MCP 显著增加缓存争用,导致最坏情况执行时间 (WCET) 超过平均案例执行时间 (ACET) 100% 或更多。由于安全关键型开发人员必须为 WCET 制定预算,因此平均分配的任务(关键和非关键)的时间超过了所需的时间,从而导致 CPU 利用率显著降低。解决此问题的一种方法是利用支持缓存分区的 RTOS,它使开发人员能够以减轻争用和减少 WCET 的方式绑定和控制干扰模式,从而在不影响安全关键性的情况下最大化可用 CPU 带宽。

缓存争用

在简单的双核处理器配置(图 1)中,每个内核都有自己的 CPU 和 L1 缓存。两个内核共享一个二级缓存。(请注意,未显示共享内存和可选 L3。

图1:双核配置,无需缓存分区

pYYBAGNp9jOAc1p6AAAzASo43tM277.jpg

在此配置中,在核心 0 上执行的应用程序与在核心 1 上执行的应用程序竞争整个二级缓存。(请注意,同一内核上的应用程序也会相互竞争 L2;缓存分区也适用于这种情况。如果核心 0 上的应用程序 A 使用的数据映射到与核心 1 上的应用程序 B 相同的缓存行,则会发生冲突。

例如,假设 A 的数据驻留在 L2 中;对该数据的任何访问都将花费很少的处理器周期。但假设 B 访问的数据恰好映射到与 A 的数据相同的 L2 缓存行。此时,必须从 L2 中逐出 A 的数据(包括对 RAM 的潜在“写回”),并且必须将 B 的数据从 RAM 中引入缓存。处理此碰撞所需的时间通常由 B 收取。然后,假设 A 再次访问其数据。由于该数据不再位于 L2 中(B 的数据在其位置),因此必须从 L2 中逐出 B 的数据(包括潜在的“写回”到 RAM),并且 A 的数据必须从 RAM 中恢复到缓存中。处理此碰撞所需的时间通常由 A 收取。

大多数时候,A和B很少会遇到这样的碰撞。在这些情况下,它们各自的执行时间可以被视为“平均情况”(ACET)。但是,有时,它们的数据访问会以高频率发生冲突。在这些情况下,它们各自的执行时间必须被视为“最坏情况”(WCET)。

在开发可认证的安全关键型软件时,必须为最坏情况的行为预算应用程序的执行时间。此类软件必须有足够的时间预算才能在每次执行时完成其预期功能,以免导致不安全的故障情况。安全关键型 RTOS 必须强制实施时间分区,以便每个应用程序都有固定的 CPU 时间预算来执行。

由于多个内核上的多个应用程序可能会产生对 L2 缓存的争用,因此 MCP 上的 WCET 通常比 ACET 高得多。由于可认证的安全关键型应用程序必须有时间预算来容纳其 WCET,这种情况会导致大量预算但未使用的时间,从而导致 CPU 利用率显著下降。

缓存分区

缓存分区通过减少 WCET 来提高 CPU 利用率,从而减少必须预算以容纳 WCET 的时间量。同样,在简单的双核处理器配置(图 2)中,每个内核都有自己的 CPU 和 L1 缓存,并且两个内核共享一个 L2 缓存。

图2:具有缓存分区的双核配置

poYBAGNp9jWAU6wnAABFE6kB0AU379.jpg

在此配置中,RTOS 对 L2 缓存进行分区,以便每个内核都有自己的 L2 段,这意味着内核 0 上的应用程序使用的数据将仅缓存在内核 0 的 L2 分区中。同样,核心 1 上的应用程序使用的数据将仅缓存在核心 1 的 L2 分区中。这种分区消除了不同内核上的应用程序通过 L2 冲突相互干扰的可能性。如果没有这种干扰,应用程序 WCET 和 ACET 之间的增量通常比没有缓存分区的情况要低得多。通过限制和控制这些干扰模式,缓存分区使应用程序执行时间更具确定性,并使开发人员能够更严格地预算执行时间,从而保持较高的处理器利用率。

测试环境和应用程序

为了演示缓存分区的优势,DDC-I 使用 Deos(其可认证、安全关键、时间和空间分区的 RTOS)来运行一套四个内存密集型测试应用程序,所有这些应用程序都具有一系列数据/代码大小、顺序和随机访问策略以及各种工作集大小:

只读

只写

复制

代码执行

测试是在具有 32 KB L1 数据缓存、24 KB L1 指令缓存和 512 KB 统一 L2 缓存的 1.6 GHz 凌动处理器 (x86) 上进行的。请注意,虽然这些测试使用了单核 x86 处理器,但 Deos 的缓存分区功能同样适用于在同一内核上执行的应用程序(这些应用程序也竞争 L2)。此外,它不依赖于 x86 处理器所特有的任何功能,并且同样适用于其他处理器类型(如 ARM 或 PowerPC)。

测试是在有和没有“缓存垃圾箱”应用程序的情况下运行的,该应用程序从L2中逐出测试应用程序数据/代码,并使用自己的数据/代码“脏”L2。实际上,从测试应用程序的角度来看,缓存垃圾程序将 L2 置于最坏情况状态。也就是说,缓存垃圾箱模拟真实场景,其中不同的应用程序同时运行并争用共享的 L2 缓存。

每个测试应用程序在三种情况下执行。在场景 1 中,在没有缓存分区或缓存垃圾的情况下执行,测试应用程序将竞争整个 512 KB 二级缓存以及 RTOS 内核和各种调试工具。此测试建立基线平均性能,其中每个测试都以“平均”数量的 L2 争用执行。

在不使用缓存分区的场景 2 中,测试应用程序与 RTOS 内核、场景 1 中使用的同一组调试工具以及恶意缓存垃圾程序应用程序竞争整个 512 KB 二级缓存。此测试建立基线最坏情况性能,其中每个测试在来自其他应用程序(主要是缓存垃圾程序)的最坏情况下执行 L2 干扰。

在使用缓存分区和缓存垃圾的场景 3 中,将创建三个 L2 分区:

分配给测试应用程序的 256 KB 分区

分配给 RTOS 内核的 64 KB 分区以及方案 1 和方案 2 中使用的同一组调试工具

分配给恶意缓存垃圾程序应用程序的 192 KB 分区。

此方案建立了优化的最坏情况性能,其中每个测试在其自己的 L2 分区内执行,不受其他应用程序(包括缓存垃圾程序)的干扰。

缓存分区结果、优势

图 3 显示了只读测试应用程序的结果。

图3:缓存分区对只读测试的影响

pYYBAGNp9jaAJhwZAABLOKtqL98240.jpg

例如,在没有缓存分区和缓存垃圾的情况下(方案 1,ACET),只读测试在工作集大小为 512 KB 的情况下,每次执行的平均时间为 105 微秒。在方案 2(没有分区的 WCET,添加了缓存垃圾箱)中,对于相同的 512 KB 工作集,测试平均每次执行 400 微秒,增加了 280%。添加缓存分区(方案 3,带缓存垃圾的 WCET)时,平均执行时间降至 117 微秒,仅比 ACET 高 11%。

这些结果证明了缓存分区对于每个周期执行大量读取的应用程序的有效性。尽管由于量级差异,此处很难辨别,但当应用程序的工作集大小适合其使用的缓存分区(在本例中为 256 KB)时,对边界 WCET 的影响更为明显。由于缓存的性质,此结果是预期的。也就是说,嵌入式实时应用程序的工作集大小往往相对较小,因此我们预计缓存分区将使大多数应用程序受益。

只写测试的结果与只读测试相似,但对于较小的工作集更明显。对于较大的工作集,结果显示具有和不具有缓存分区的 WCET 之间的差异相对较小。

复制测试的结果与只读测试相似,但对于较小的工作集更明显。对于较大的工作集,结果不那么显着,但仍然显示出具有缓存分区的 WCET 的显着改进(大约 2 倍)。

代码执行测试的结果与只读测试类似,但稍微不那么引人注目。

请注意,在同一缓存分区中执行的应用程序可能会相互干扰。但是,与在具有共享缓存的不同内核上执行的应用程序之间可能发生的不可预测的干扰模式相比,此类干扰通常更容易分析和绑定。在这些情况下,如果干扰不可预测,则可以将应用程序映射到单独的缓存分区。

基准测试结果清楚地表明,缓存分区提供了一种有效的方法来绑定和控制 MCP 上共享缓存中的干扰模式。特别是,在对缓存进行分区时,可以更严格地绑定和控制 WCET。这允许应用程序开发人员设置相对紧凑但安全的执行时间预算,从而最大限度地提高 MCP 利用率。

当然,不同的应用和硬件配置的结果会有所不同,并且需要额外的RTOS功能才能成功认证基于安全关键型MCP的系统。无论如何,这些结果代表了在使用MCP托管可认证的安全关键应用程序的目标方面的重大进步。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    19091

    浏览量

    228776
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10802

    浏览量

    210769
收藏 人收藏

    评论

    相关推荐

    华纳云:什么是负载均衡?优化资源利用率的策略

    负载均衡是现代计算机网络架构中不可或缺的一部分,它通过智能分配请求和任务,确保系统资源的高效利用。本文将探讨负载均衡的概念、工作原理、优化资源利用率的策略及其在实际应用中的重要性。 1. 什么是负载
    的头像 发表于 10-28 16:07 98次阅读

    交换机内存利用率过高会是什么问题

    在现代网络架构中,交换机扮演着至关重要的角色,负责在网络设备之间高效地转发数据包。然而,随着网络规模的扩大和数据流量的增加,交换机的内存资源可能会变得紧张,导致内存利用率过高。这种情况如果不加
    的头像 发表于 10-18 09:53 268次阅读

    服务器cpu用率高怎么解决

    服务器CPU用率高是一个常见的问题,它可能会导致服务器性能下降,甚至影响用户体验。 一、了解服务器CPU用率高的原因 应用程序问题
    的头像 发表于 10-10 15:14 534次阅读

    什么是CPU缓存?它有哪些作用?

    CPU缓存(Cache Memory)是计算机系统中一个至关重要的组成部分,它位于CPU与内存之间,作为两者之间的临时存储器。CPU缓存的主
    的头像 发表于 08-22 14:54 2047次阅读

    异构混训整合不同架构芯片资源,提高算力利用率

    的解决方案。通过混合使用多种异构芯片,可以充分利用不同芯片的优势,提高算力利用率,降低算力成本,并推动AI技术的广泛应用。   异构混训能够整合不同架构芯片资源   在2024年世界人工智能大会AI基础设施论坛上,无问芯穹联合创
    的头像 发表于 07-18 00:11 3297次阅读

    针对特定内核使用PFlash,是否会影响多核应用程序的性能?

    /函数应保持在 PFlash 0,内核 1 保持在 Pflash1 ... 等。 但如果我们保留所有 .text 无论是在 PFlash0 还是在 PFlash1,是否会影响我的多核应用程序的性能?
    发表于 07-04 06:04

    DC/AC电源模块:提升光伏发电系统的能源利用率

    BOSHIDA DC/AC电源模块:提升光伏发电系统的能源利用率 随着环境保护意识的提高和能源需求的增加,光伏发电系统作为一种清洁能源的代表,受到了越来越多的关注。然而,光伏发电系统在实际应用中还
    的头像 发表于 06-17 13:53 303次阅读
    DC/AC电源模块:提升光伏发电系统的能源<b class='flag-5'>利用率</b>

    恒讯科技全面解析:如何有效降低服务器CPU利用率

    降低服务器CPU利用率是一个涉及监控、诊断和优化的全面过程。以下是一些有效的方法: 1、监控CPU使用率: 使用工具如top, htop, vmstat, 或 iostat实时监控
    的头像 发表于 05-10 17:24 633次阅读

    鸿蒙OS开发实例:【ArkTS类库多线程CPU密集任务TaskPool】

    CPU密集任务是指需要占用系统资源处理大量计算能力的任务,需要长时间运行,这段时间会阻塞线程其它事件的处理,不适宜放在主线程进行。例如图像处理、视频编码、数据分析等。 基于多线程并发机制处理CPU密集
    的头像 发表于 04-01 22:25 760次阅读
    鸿蒙OS开发实例:【ArkTS类库多线程<b class='flag-5'>CPU</b>密集<b class='flag-5'>型</b>任务TaskPool】

    HarmonyOS CPU与I/O密集任务开发指导

    。 基于多线程并发机制处理CPU密集任务可以提高CPU利用率,提升应用程序响应速度。 当进行一
    的头像 发表于 02-18 10:17 934次阅读
    HarmonyOS <b class='flag-5'>CPU</b>与I/O密集<b class='flag-5'>型</b>任务开发指导

    台积电晶圆厂产能利用率将全面提高

    消息来源表示,TSMC 8英寸及12英寸晶圆工厂的利用率已分别回升至70-80%和80%。尤其值得注意的是,28纳米制程的利用率已重返80%的常态范围;而7/6纳米与5/4纳米制程的利用率更分别达到75%以及接近饱和状态。
    的头像 发表于 01-17 13:56 637次阅读

    产能利用率降至四成!电池行业迎深度洗牌

    据统计,我国电池生产的平均产能利用率低于50%,即便是龙头企业宁德时代上半年产能利用率也降至60.5%,三季度也仅回升至70%以上,仍处于历史较低水平。
    的头像 发表于 12-28 17:16 797次阅读

    SPWM与SVPWM—调制比与电压利用率

    学习调制方法时,**调制比**与**电压利用率**是个重要的概念。我发现教材中却对这两个内容介绍的很模糊,网上也没有很多包含具体推导过程的公式。
    的头像 发表于 12-01 17:04 2w次阅读
    SPWM与SVPWM—调制比与电压<b class='flag-5'>利用率</b>

    全球晶圆厂利用率,将降至67%

    尽管情况有所改善,但芯片制造指标仍然疲软,预计 2023 年第四季度晶圆厂利用率将降至 67%,部分原因是库存消耗增加了销售额。因此,预计 2023 年下半年资本支出将下降。
    的头像 发表于 11-15 17:08 706次阅读
    全球晶圆厂<b class='flag-5'>利用率</b>,将降至67%

    晶圆代工产能利用率下降,降价大战一触即发

    晶圆代工行业正面临产能利用率的重大挑战,据悉,联电、世界先进和力积电等主要代工厂纷纷降低明年首季的报价,幅度高达两位数百分比,项目客户降幅更高达15%至20%,各大晶圆代工厂深陷产能利用率六成保卫战。
    的头像 发表于 11-13 17:17 836次阅读