0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

激光雷达鲜为人知的主要用途:定位

佐思汽车研究 来源:佐思汽车研究 作者:佐思汽车研究 2022-11-09 10:16 次阅读

激光雷达除了感知外,另外一个主要的用途就是定位,目前的无人出租车研发基本都是用激光雷达定位,当然严格地说是融合定位。

首先解释下什么是定位,为什么需要高精度定位。

定位就是无人车知道自己在坐标系中的位置和姿态,这个坐标系可以是一个局部的坐标系,比如一个园区,采集这个园区的一些地图,自由定一个原点,这个局部坐标系便已经建好,相对于这个坐标系来得到车辆的位置和姿态。坐标系也可以是一个全局的坐标系,比如全球坐标系,可以知道一个很精确的位置。这就是常说的经纬度绝对定位。位置对应X,Y,Z,即相当于某个坐标系,汽车的平移是多少。

姿态是三个方向的旋转状态,一般会用欧拉角来表示。包括横滚、俯仰和航向,分别相对于X,Y,Z三个坐标轴。如果本地坐标系已经定义好,现在有一个车上的坐标系,它相对于本地坐标系的变化(即姿态的变化),就可用三个角度来表示,也就是本地坐标系的三个轴和相对坐标系的这三个轴之间的夹角。

除了位置和姿态这两个维度,自定位系统还要输出很多信息。除去速度、加速度和角速度外,基于数学概率算法的相对定位的加入,自定位系统还需要对位置和姿态加上一个置信度,而基于卫星广播的绝对定位准确率达到了99%,一般不需要加置信度。

虽然车辆本身的传感器也能输出速度、加速度和角速度,但是定位系统基于位置的变化输出的信息准确度更高,加速度和角速度是相对于车体本身的,告知车辆当时瞬时的加速度和角速度,对人的驾乘体验非常重要。控制模块根据这些信息做一些控制上的优化,使人的体感更好。

高精度地图自然需要高精度定位,全局规划也需要高精度定位。

88f9e34a-5fd3-11ed-8abf-dac502259ad0.jpg

上图是特斯拉2022年AIDAY上的特斯拉未来的FSD Beta版智能驾驶架构图,自然离不开高精度地图,现在的FSD版不需要高精度地图,因为现在的FSD只是L2级辅助驾驶,没有车道级定位,自然也用不上车道级地图。

绝对定位离不开卫星或RTK系统,姿态则主要依靠IMU,相对定位基于环境特征匹配,常见的视觉和激光雷达定位就是如此。姿态很多时候可以叫航迹推算,航迹推算就是根据上一时刻的“位置”和“姿态”,叠加一些测量信息可以知道现在的“位置”和“姿态”。IMU是惯性测量单元,包含了加速度计和陀螺仪,其中加速度计会输出加速度的信息,同时还包含重力加速度;陀螺仪是一个旋转,即是前面所讲到三个轴上的一个旋转。要做到无人车10秒单点水平精度1.41米的IMU,这与军事用途的IMU要求是同一级别,价格近20万人民币。

视觉定位置信度很低,顶多可以做个辅助,核心还是激光雷达,视觉对光线变化非常敏感,而室外状态下,光线每时每刻都在变化,例如这次跑过去的光照度和下次跑过去的光照度不一样,上次检测到的特征就无法检测到,典型SIFT特征或者别的特征就会造成定位的失败。但是有一些特征具有明显Semantic意义,比如车道线或者旁边立的这些柱子,红绿灯的柱子或者红绿灯本身或者一些交通标志之类的,对于定位而言非常有用。

这里说一下SLAM(即时定位与地图构建),无人车的定位任务可以看做轻量级SLAM,SLAM原本用于机器人领域,SLAM成熟算法都是采用激光雷达,极少用视觉。

SLAM分类

8909fd66-5fd3-11ed-8abf-dac502259ad0.jpg

上表出自2022年8月论文《Evaluation and comparison of eight popular Lidar and Visual SLAMalgorithms》,毫无疑问视觉SLAM精度与激光雷达差距巨大,则极容易失败。量产项目没有用视觉SLAM的例子。

8936f2e4-5fd3-11ed-8abf-dac502259ad0.png

大部分的无人车导航架构就是上图的架构,核心就是NDT,即点云配准的正态分布变换算法,它可以做图也可以定位。无人车导航近似于机器人的SLAM问题,思路通常都是利用激光雷达配准制图并定位,常见的方法有ICP、NDT、Gaussian fields。还有一些不常用的如Point-based probabilistic registration ,Likelihood-fieldmatching,Quadratic patches。还有基于深度学习的比如蒙特卡洛定位算法(MCL)。这些也可以称之为激光雷达点云扫描配准算法。ICP和NDT都比较消耗CPU资源,而不是GPU或AI资源。NDT是目前最常用的无人车定位算法,在无人车主流操作系统AUTOWARE中直接嵌入了完整的NDT算法。

ICP是早期常用的技术方式,优点是对初始精度要求不高,缺点是首先要剔除不合适的点对(点对距离过大、包含边界点的点对),其次是基于点对的配准,并没有包含局部形状的信息,再次是每次迭代都要搜索最近点,计算代价高昂,ICP有不少变体算法如八叉树或IDC

通过不断比对实时扫描到的点云和已经建好的全局点云地图,我们就可以持续获得当前的位置。ICP(迭代最近点)等配准算法通过对所有的点或者提取的特征点进行匹配配准以确定当前的位置,但是这样就有一个问题:我们所处的环境是在不断变化的,比如树木的稀疏程度,或者环境中车辆及行人的移动,乃至固有的测量误差,这些都会导致实时扫描到的点云与已建立的点云地图有些许的差别,从而导致较大匹配误差。

而NDT可以在很大程序上消除这种不确定性。NDT没有计算两个点云中点与点之间的差距,而是先将参考点云(即激光雷达先验地图)转换为多维变量的正态分布,如果变换参数能使得两幅激光数据匹配的很好,那么变换点在参考系中的概率密度将会很大。因此,可以考虑用优化的方法比如牛顿法,求出使得概率密度之和最大的变换参数,此时两幅激光点云数据将匹配的最好。

可以这样来做一个通俗的理解:NDT把我们所处的三维世界按照一定长度的立方体(比如30cm*30cm*30cm)进行了划分,类似于一个魔方,网格Grid,与VOXEL近似,每个立方体内并不是存储一个或一些确切的点,而且存储这个立方体被占据的概率密度。当接收到需要匹配的点云时,也按照这样的划分方式进行划分,然后进行配准。

因此,NDT具有以下的特征:支持更大的地图,更稠密的点云,相较于ICP等基于点的匹配算法,速度更快且更加容忍环境的细微变化。

NDT流程

89516192-5fd3-11ed-8abf-dac502259ad0.png

NDT,Normal Distributions Transform正态分布变换算法的简称,其是一种统计学模型。如果一组随机向量满足正态分布,那么它的概率密度函数为:

8969423a-5fd3-11ed-8abf-dac502259ad0.png

其中D表示维度,表示均值向量,表示随机向量的协方差矩阵。由于扫描得到的激光点云数据点是三维空间点坐标,所以需要采用三维正态分布。NDT能够通过概率的形式描述点云的分部情况,这有利于减少配准所需要的时间。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2551

    文章

    51184

    浏览量

    754323
  • 激光雷达
    +关注

    关注

    968

    文章

    3983

    浏览量

    190042

原文标题:激光雷达鲜为人知的主要用途:定位

文章出处:【微信号:zuosiqiche,微信公众号:佐思汽车研究】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    一则消息引爆激光雷达行业!特斯拉竟然在自研激光雷达

    电子发烧友网报道(文/梁浩斌)一则消息引爆激光雷达行业?上周业界流传的一份会议纪要称,有自动驾驶专家透露,特斯拉已经设计了自己的激光雷达,并正在与大陆集团合作,将自己开发的激光雷达技术集成到汽车系统
    的头像 发表于 12-30 00:09 1186次阅读

    激光雷达会伤害眼睛吗?

    随着激光雷达日益普及,人们开始担忧:这种发射激光的设备,对人眼的安全性如何?了解这个问题前,我们首先需要知道激光雷达和它发射的激光,到底是什么。
    的头像 发表于 11-07 10:47 260次阅读
    <b class='flag-5'>激光雷达</b>会伤害眼睛吗?

    激光雷达的维护与故障排查技巧

    激光雷达(LiDAR,Light Detection and Ranging)是一种利用激光进行距离测量和目标识别的技术。它广泛应用于无人驾驶汽车、地理信息系统(GIS)、环境监测、航空航天等领域
    的头像 发表于 10-27 11:04 1134次阅读

    激光雷达技术的基于深度学习的进步

    一、激光雷达技术概述 激光雷达技术是一种基于激光的遥感技术,通过发射激光脉冲并接收反射回来的光来测量物体的距离和速度。与传统的雷达技术相比,
    的头像 发表于 10-27 10:57 423次阅读

    Jtti:Windows服务器在企业环境中的主要用途和应用场景是什么?

    本文将探讨Windows服务器在企业环境中的主要用途和应用场景。我们将介绍Windows服务器在企业中的广泛应用,以及其在网络、存储、应用程序托管等方面的重要用途
    的头像 发表于 09-21 11:28 428次阅读

    光学雷达激光雷达的区别是什么

    光学雷达激光雷达是两种不同的遥感技术,它们在原理、应用、优缺点等方面都存在一定的差异。以下是对光学雷达激光雷达的比较: 定义和原理 光学雷达
    的头像 发表于 08-29 17:20 1442次阅读

    施密特触发器的主要用途有哪些

    施密特触发器(Schmitt Trigger)作为一种具有正反馈特性的比较器电路,在电子设备和电路中扮演着至关重要的角色。其主要用途广泛,涵盖了信号处理、波形变换、脉冲整形、脉冲鉴幅、振荡电路、数字逻辑电路等多个领域。
    的头像 发表于 08-12 15:57 2122次阅读

    一文看懂激光雷达

        文章大纲 城市 NOA 成竞争高地,政策助力高阶智能驾驶加速落地 成本下探+智驾升级,2030年激光雷达市场规模有望超万亿       ·城市 NOA面临工况复杂问题,激光雷达为“优选
    的头像 发表于 06-27 08:42 664次阅读
    一文看懂<b class='flag-5'>激光雷达</b>

    可编程电源芯片主要用途

    可编程电源芯片主要用途 可编程电源芯片是一种广泛应用于电子设备中的集成电路,它可以根据用户的需求进行编程,以实现不同的电源管理功能。这种芯片的出现,极大地提高了电子设备的灵活性和可靠性,为电子设计
    的头像 发表于 06-10 15:31 745次阅读

    晶振在激光雷达系统中的作用有哪些

    激光雷达系统需要用精确的时间测量来计算距离和生成高分辨率的3D图像。晶振在激光雷达系统中起着关键作用,主要用于提供稳定的时钟信号和高精度的时间基准。
    的头像 发表于 05-29 11:45 644次阅读

    基于FPGA的激光雷达控制板

    控制板主要是用于控制线阵激光器,并高效地采集和处理大量的激光点云数据,具备强大的数据处理能力和高速数据传输接口,以确保系统能够准确地感知周围环境。图激光雷达控制板框图
    的头像 发表于 05-28 08:11 701次阅读
    基于FPGA的<b class='flag-5'>激光雷达</b>控制板

    激光雷达的应用场景

    以及自动泊车等功能。激光雷达的高精度测量能力使得自动驾驶系统能够做出准确的决策,从而提高驾驶的安全性和可靠性。 无人机:在无人机领域,激光雷达主要用于实现精准的定位和遥感能力。它可以提
    的头像 发表于 04-10 14:59 1398次阅读

    激光雷达的应用场景

    激光雷达(LiDAR)的应用场景非常广泛,它由于探测波长短、波束定向性强、能量密度高等特点,具有高空间分辨率、高的探测灵敏度,并能分辨被探测物种,且不存在探测盲区。以下是激光雷达的一些主要应用场
    的头像 发表于 03-21 10:38 1089次阅读

    汽车激光雷达:竞争格局和技术演进

    激光雷达技术是推动智能驾驶的关键驱动力之一,2023年汽车激光雷达领域的竞争态势、技术演进以及市场变化挺快的。激光雷达技术,在国外车企主要是L3的必要组件,而在中国作为预埋的措施,来不
    的头像 发表于 01-23 16:13 682次阅读
    汽车<b class='flag-5'>激光雷达</b>:竞争格局和技术演进

    华为激光雷达参数怎么设置

    华为激光雷达是一种常用的传感器技术,可用于距离测量和感应。它的参数设置对于确保其性能和功能至关重要。在本文中,我们将详细介绍华为激光雷达的参数设置以及其影响和应用。 首先,我们需要了解激光雷达
    的头像 发表于 01-19 14:17 1828次阅读