0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探索宽带隙WBG半导体的基础知识和应用

RECOM 来源:RECOM 作者:RECOM 2022-11-10 11:40 次阅读

GaN是氮化镓的化学名称缩写,属于第三代半导体,通常被称为「宽带隙」半导体(WBG),因为它需要相对较高的能量(与Si相比) 才能将原子的电子从价带(如绝缘体)击至导带(如导体)。本文将探索这种「宽带隙」(WBG)半导体的基础知识和应用。

若涉及到电子控制开关时,您需要一种材料在关闭时具有高击穿电场(例如阻断电压),开启时导电通道具有极低电阻,这就是为什么WBG材料能够成为出色的半导体器件。您可能听说过其他WBG半导体如碳化硅(SiC)、砷化镓(GaAs) 或氮化铝(AlN)。

7124b60c-60a8-11ed-8abf-dac502259ad0.png

图 1 –宽带隙材料与硅的性能指标基准雷达图

GaN还有一些有趣的特性,让它在各方面更具吸引力。它的电子迁移率和熔点分别实现了高电流通道和更高的温度(或在相同或更低的温度下提高可靠性)。

制成晶体管时与硅基金属氧化物半导体场效应晶体管(MOSFET)相比,该器件具有更低的栅极电荷和等效通态沟道电阻(RDS_ON)。

虽然GaN的开关类型很多,但我们将重点放在有高电子迁移率的GaN晶体管(以 HEMT 为例,其结构如图 2 所示)。栅极激活后,电流非常快地通过GaN浅层,亦称为二维电子气(2DEG),如图中的虚线所示。

7158192a-60a8-11ed-8abf-dac502259ad0.png

图 2 – 硅基氮化镓(GaN-on-Si)横向晶体管之横截面

虽然GaN 在发光二极管(LED) 和 RF应用中已有数十年,但在开关应用中使用是十年前左右才开始的,例如在开关电源和开关逆变器已变得越来越常见。

上述吸引人的特性使采用 GaN 开关设计的电源能够解决许多尺寸、重量和功率因数(也称为 SWaP 因数)的问题,而这往往是几乎所有电源解决方案的关键驱动因素。

较低的 RDS_ON 和栅极转换时间有助于分别降低传导损耗和开关损耗,从而提高电源系统的整体效率。这些特性还提供了额外的特性,也就是能够以较低的占空比 (D) 控制开关以实现更高的直接转换比,而这对MOSFET 来说是不切实际的(例如,直接转换 48V 到 1V)。

当速度过快时

WBG开关速度可以很快,而且是真的很快。其实它们与我们在教科书中首次了解的那种理想开关非常接近,例如零转换时间。

转换能那么快是因为 GaN 等材料有极低的栅极电荷和极高的电子迁移率。即使在一些相当高功率的应用中,开启和关闭转换也可以在纳秒之内发生(1 ns = 10-9 秒)。

转换速度如此之快,以至于大多数试图在电路板上测量转换速率的工程师可能甚至没有合适带宽(BW)的示波器可用来充分捕获这个信号

如果需要正确地测量和表征一个具有纳秒级跃迁的信号,那么范围BW需要在GHz范围内。这类示波器通常非常昂贵,而且专门用于高速数据分析而不是功率级的分析。

717798e0-60a8-11ed-8abf-dac502259ad0.png

图 3 – EPC2100 开关节点波形,VIN = 12 V 至 VOUT = 1.2 V、IOUT = 25 A、1 MHz,显示上升/下降时间

极快的开关节点跃迁率的负面影响是电磁干扰(EMI)和过冲/振荡事件的增加,这两种情况都是由于不必要的能量转储,或更具体地说,高能跃迁电流不适当地流向地面,进入寄生电感或等效串联电感(ESL)。

由于本文的讨论范围有限,我们只能稍微触碰到这些议题,但人们应该寻找更多的资料并以严谨的态度深入研究这些议题。

我们要非常清楚地指出,在几乎所有可比较的应用中(在本讨论的范围内我们至少应该限于非 RF 开关电源应用),WBG组件无法直接取代同时代的 Si。

与 Si FET 相比,GaN HEMT 大幅降低开关能量和高电子迁移率可以实现纳秒范围内的跃迁,但是这些极端的电流跃迁会从以前的良性寄生环路电感到现在导致灾难性的电压过冲,如下方计算所示。

71995e1c-60a8-11ed-8abf-dac502259ad0.png

方程1 - 显示过冲电压、寄生电感和电流变化率之间的关系。

对Si 设计的电流转换速率 (di/dt)来说仅几个纳亨的寄生电感可能可以忽略不计,但对 GaN 设计却是灾难性的。

71b5e6fe-60a8-11ed-8abf-dac502259ad0.png

图 4 –升压 dc/dc 拓扑的电流(红色/黄色/绿色)及寄生电感

上面的方程式精确地描述如此小的 ESL,即使只来自于组件封装,是如何对您的设计产生灾难性的影响,这甚至是在人们花大量时间和精力来设计出一个非常干净且紧凑的布局以尽可能地包含这些电流之前。

不过请不要误会,恰当的布局技术和GaN 电路的最佳实践是您对抗 EMI 和预防转换器严重故障的最佳方法(不受控制的振荡会导致电气过应力或EOS 而最终自毁)。

71e28c9a-60a8-11ed-8abf-dac502259ad0.png

图 5 –以通用组件封装和特性计算寄生电感引起的电压过冲

栅极驱动的挑战

WBG栅极阈值电压 (Vth) 往往低于对应的 Si 并且具有更低的绝对最高电压水平,因此若要在栅极驱动上发挥GaN 的潜力、稳健地设计和实施此类解决方案的话将经过相当艰难的学习过程。

市场上有各种各样的解决方案来应对这些挑战,从集成栅极驱动器(甚至全功率级)到完全合格的电源模块

由于高转换率 (dV/dt) 作用在开关的栅源电容(又名为米勒电容或 CGS),栅源电容可以向栅漏电容 (CGD) 施加电位而触发不必要的导通而有击穿或误导通的风险,因此必须更加注意栅极驱动电路

如果是在同步设备导通的情况下发生这种情况,就有可能发生击穿(也称为交叉传导)。最好的情况是降低有效效率,而最坏的情况则是导致 DC/DC 转换器故障。

不同种类的 GaN 可能具有不同的栅极驱动要求,这可能是使用 GaN 组件进行设计时面临的最大挑战之一。有些可以直接驱动并且是常关器件,有些使用所谓的共源共栅配置,其中使用增强型(常闭型)MOSFET来驱动GaN 器件的耗尽型(常开型)栅极。有些可能需要负或偏置栅极驱动电压。因此,即使是由自己设计 DC/DC 解决方案,获得合格的 GaN 驱动器是非常有利的。

丰富的资源

外面有大量资源可以用来学习如何获取和实施 GaN 解决方案,有些资源已在前文提供。如果您不熟悉 WBG 和 GaN 解决方案,请充分利用它们来协助您学习。您需要经过好几代的设计和测试才能真正做出稳健的 GaN 设计,尤其如果您是刚接触该领域的工程师。

最后再一次提醒,GaN 不是 Si 的直接替代品,因此不应朝这个方向研究!早期人们在研究如何在电源中使用 GaN 时就已学到了教训甚至让他们质疑WBG的可行性,因为当时没有重视谨慎布局实践和稳健栅极驱动设计的重要性。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CGD
    CGD
    +关注

    关注

    0

    文章

    11

    浏览量

    8142
  • dcdc转换器
    +关注

    关注

    8

    文章

    209

    浏览量

    38728
  • GaN器件
    +关注

    关注

    1

    文章

    35

    浏览量

    7838
收藏 人收藏

    评论

    相关推荐

    半导体物理基础知识pdf

    ;font face="Verdana">半导体物理基础知识</font>下载</strong>
    发表于 10-09 08:30

    半导体元件基础知识及其应用电路

    本帖最后由 eehome 于 2013-1-5 09:45 编辑 半导体元件基础知识及其应用电路...........
    发表于 05-12 23:28

    半导体基础知识与晶体管工艺原理

    半导体基础知识与晶体管工艺原理
    发表于 08-20 08:37

    半导体基础知识

    清华大学半导体基础知识课件
    发表于 12-05 08:44

    为什么说宽带半导体的表现已经超越了硅?

    满足市场需求,使用硅的新器件年复一年地实现更大的功率密度和能效,已经越来越成为一个巨大的挑战。从本质上讲,芯片的演进已经接近其基础物理极限。但是,为什么说宽带半导体的表现已经超越了硅呢?
    发表于 07-30 07:27

    半导体C-V测量基础知识,总结的太棒了

    关于半导体C-V测量的基础知识,你想知道的都在这
    发表于 04-12 06:27

    半导体基础知识.ppt

    第一章 半导体二极管 1.1   半导体基础知识1.2?半导体二极管的特性及主要参数 1.3 二极管电路的分析方法 1.3 特殊二极管1.3 
    发表于 05-28 10:42 116次下载

    半导体基础知识(详细篇)

    半导体基础知识(详细篇) 2.1.1 概念   根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。 1.
    发表于 11-09 16:06 2.8w次阅读
    <b class='flag-5'>半导体</b><b class='flag-5'>基础知识</b>(详细篇)

    半导体光敏元件基础知识

    半导体光敏元件基础知识           基于半导体光电效应的光电转换传感器,又称光电敏感器。采用光、电
    发表于 12-01 11:08 1480次阅读

    半导体元件基础知识概述

    本文主要介绍了半导体元件基础知识.
    发表于 06-25 13:00 0次下载
    <b class='flag-5'>半导体</b>元件<b class='flag-5'>基础知识</b>概述

    半导体器件基础知识课件PPT下载

    半导体器件基础知识课件PPT下载
    发表于 07-06 10:14 0次下载

    半导体器件基础知识

    半导体器件基础知识课件下载
    发表于 07-11 10:00 0次下载

    碳化硅宽带半导体有什么好处

    宽带隙 (WBG) 半导体极大地影响了使用它们的设备的可能性。材料的带隙是指电子从半导体价带的最高占据态移动到导带的最低未占据态所需的能量。
    发表于 07-29 15:10 1769次阅读

    使用 WBG 半导体进行设计需要更多的奉献精神

    工程师熟悉电磁干扰、并联和布局,但在从硅基芯片过渡到碳化硅或宽带隙器件时,需要多加注意。 据chip称,硅(Si)基半导体宽带隙(WBG半导体
    的头像 发表于 08-05 14:30 800次阅读
    使用 <b class='flag-5'>WBG</b> <b class='flag-5'>半导体</b>进行设计需要更多的奉献精神

    宽带隙(WBG)半导体器件主要应用于哪?

    集成宽带隙(WBG)半导体器件作为硅技术在多种技术应用中的替代品,是一个不断增长的市场,可以提供效率和功率密度的改善,在能源和成本节约方面有很大的反响。WBG具有更高的开关频率、更低的
    发表于 02-02 16:36 1519次阅读