0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

激光雷达相机外参标定相关内容

3D视觉工坊 来源:十点雨@知乎 作者:十点雨@知乎 2022-11-10 14:59 次阅读

LiDAR Camera Calibration (LCC)系列,主要介绍激光雷达相机外参标定相关内容。本文主要介绍相关的开源代码和软件,主要包括target-based和targetless两类方法,每个方法对应标题后说明了方法的提出年份和开源代码的语言(c : c++, p: python, m: matlab)。

Github同步更新:https://github.com/Deephome/Awesome-LiDAR-Camera-Calibration

▊1. target-based方法一般就是使用标定板,可以是一块普通的矩形板,可以添加视觉效果(比如棋盘格,ArUco),可以在矩形板上镂空出特定形状。

1.0 CamLaserCalibraTool (2004c)

91cba664-6084-11ed-8abf-dac502259ad0.jpg

主要参考了华盛顿大学2004年的论文,旷视提供了开源实现和博客解读。2D激光雷达和相机标定。主要利用点到平面和边缘的约束。详情见旷视的博客和开源:

github:https://github.com/MegviiRobot/CamLaserCalibraTool 博客:https://zhuanlan.zhihu.com/p/137501892 参考论文:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.7118&rep=rep1&type=pdf

1.1 LCCT (2005m)

来自CMU Robotics Institute, 已知最早3D Laser与相机标定的工作(2005年),基于matlab的图形用户界面,进行激光雷达相机外参标定。 target-based方法,使用标定板,采集多个点云图像对,在点云对应的深度图(range image)上框选标定板平面区域,即可求解外参(两阶段)。 第一阶段,分别最小化两个坐标系中相机中心到平面距离和平面法向量的差异,依次线性求解平移和旋转;第二阶段,最小化point-to-plane距离,迭代求解。

91e30e3a-6084-11ed-8abf-dac502259ad0.jpg

官方网站:http://www.cs.cmu.edu/~ranjith/lcct.html 参考论文:https://www.ri.cmu.edu/pub_files/pub4/unnikrishnan_ranjith_2005_3/unnikrishnan_ranjith_2005_3.pdf

1.2 cam_lidar_calib (2010c)

来自密歇根大学,ROS / C++实现。

91ef72ba-6084-11ed-8abf-dac502259ad0.jpg

使用checkerboard,最少需要3个视图。自动提取特征,图像中提取checkerboard在相机坐标系中的法向量和距相机原点的距离,点云中提取checkerboard的平面点。

Github开源:https://github.com/SubMishMar/cam_lidar_calib 参考论文: http://robots.engin.umich.edu/publications/gpandey-2010a.pdf

1.3 lidar_camera_calibration (2017c)

来自印度IIIT Robotics Research Lab,ROS package (C++)实现, 介绍了两种方法。第一种方法是基于2D-3D correspondence,采用中空矩形纸板作为目标,在图像上手动标记角点2D像素,在点云中手动框选线段,利用直线相交求解3D角点,然后利用PnP+ransac求解外参。缺点是手动标记像素点,误差较大。 第二种方法是基于3D-3D correspondence,与方法一主要区别是图像中特征的提取。通过采用ArUco二维码,可直接计算出角点在相机坐标系的3D坐标,然后利用ICP求解外参。

920163b2-6084-11ed-8abf-dac502259ad0.jpg

github开源:https://github.com/ankitdhall/lidar_camera_calibration 参考论文:https://arxiv.org/pdf/1705.09785v1.pdf

1.4 ILCC (2017p)

来自日本名古屋大学Nagoya University,python实现。完整流程如下:

920ba6e2-6084-11ed-8abf-dac502259ad0.jpg

该方法的3D角点提取方式比较独特。基于点云反射强度和chessboard颜色模式的相关性,利用一个chessboard model来拟合(匹配)分割的点云,从而利用chessboard model的角点位置表示chessboard点云中角点位置。

9217a9a6-6084-11ed-8abf-dac502259ad0.jpg

github开源:https://github.com/mfxox/ILCC 参考论文:https://arxiv.org/pdf/1708.05514.pdf

1.5 plycal (2018c)

来自HKUST,C++实现。 采用要给矩形板作为target。首先对激光雷达和相机时间同步,图像纠正。全自动地在图像中提取矩形板角点和边缘,在点云中提取矩形板的边缘和平面点。矩形特征2D-3D匹配。采用point-to-line和point-inside-polygon约束进行优化。

9223125a-6084-11ed-8abf-dac502259ad0.jpg

github开源:https://github.com/ram-lab/plycal 参考论文:https://www.semanticscholar.org/paper/Extrinsic-Calibration-of-Lidar-and-Camera-with-Liao-Chen/c52748f676ff0b082db61a49dee2d15320519744

1.6 Matlab Lidar Toolbox (2018m)

target-based方法,使用了chessboard, 理论上采集一个pose就可以求解。特征提取分别自动提取chessboard在相机和激光雷达坐标系的平面和边缘信息,利用line correspondence (direction constraint + point to line constraint)和plane correspondence (normal constraint + point to plane constraint)进行标定。

9234c176-6084-11ed-8abf-dac502259ad0.jpg

官方文档:https://ww2.mathworks.cn/help/lidar/ug/lidar-and-camera-calibration.html 参考论文:http://www.cs.cmu.edu/~kaess/pub/Zhou18iros.pdf csdn博客:https://blog.csdn.net/qq_27339501/article/details/110224436只能使用matlab的lidar toolbox,看不到源代码,该方法与plycal(2018c)的标定板点云特征提取方法类似。

1.7 extrinsic_lidar_camera_calibration (2020m)

来自 Robotics Institute, University of Michigan。matlab实现。 主要创新点是标定板点云的角点估计方法。假设在lidar原点有一个大小已知的参考标定板(reference target),希望标定板点云通过H变换后,与这个参考标定板尽量重合。优化求解H,将参考标定板角点反变换,即可得到点云中的角点位置。 之前方法采用先拟合边缘再直线相交的思路,只利用了边缘点,受点云深度测量误差影响,最后提取的四个角点可能与target真实几何不兼容。该方法的角点估计考虑了所有点,估计的四个角点也是与真实target形状兼容。 该方法与ILCC(2017p)方法类似,都是通过与一个参考的标定板拟合,从而对标定板点云参数化建模,求得角点。只是ILCC利用了点云反射强度,本方法只利用点云几何信息。

9244fe92-6084-11ed-8abf-dac502259ad0.jpg

该开源代码也实现了Matlab Lidar Toolbox (2018m)参考论文中点云边缘提取的方法: 1)先ransac拟合平面 2)找到每条scanline的端点(边缘点) 3)将标定板点云投影到拟合平面 4)拟合每条scan line 5)将边缘点投影到拟合的scan line 6)用ransac拟合边缘,去除边缘点粗差

github开源:https://github.com/UMich-BipedLab/extrinsic_lidar_camera_calibration 参考论文:https://arxiv.org/pdf/1910.03126.pdf

1.8 livox_camera_lidar_calibration(2020c)

Livox官方提供的Lidar-Camera标定代码,图像和点云都是手动标点。

github开源//github.com/Livox-SDK/livox_camera_lidar_calibration

1.9 ACSC (2020p)

来自北航,python实现,针对固态激光雷达Livox. 提出多帧点云集成精化算法(temporal-spatial-based geometric feature refinement)和基于反射强度分布的角点估计方法(reflectance intensity distribution-based 3D corner estimation )。自动提取2D和3D角点,然后用基于Ransac的PnP求解。

924e5974-6084-11ed-8abf-dac502259ad0.jpg

github开源//github.com/HViktorTsoi/ACSC 参考论文:https://arxiv.org/abs/2011.08516

1.10 velo2cam_calibration (2021c)

来自 Intelligent Systems Lab (LSI), Universidad Carlos III de Madrid, Leganes, ROS + C++实现。可以将激光雷达、单目相机、立体相机进行任意成对标定。需要比较特殊的标定板:

925b1b96-6084-11ed-8abf-dac502259ad0.jpg

github开源:https://github.com/beltransen/velo2cam_calibration 参考论文:https://arxiv.org/pdf/2101.04431.pdf

1.11 autoware

采用标定板的方法 (calibration_tookit, autoware1.10之后没有)

github:https://github.com/XidianLemon/calibration_camera_lidar 博客:https://adamshan.blog.csdn.net/article/details/81670732 https://www.cnblogs.com/xiangzh/p/14137345.html 直接手动选点的方法 :https://dlonng.com/posts/autoware-calibr-1最新版只有autoware_camera_lidar_calibrator, 直接手动选点的方法,在下文介绍。 使用标定板结果更准确一些,但是操作不方便。 1)需要手动grab多个关键帧 2)使用glviewer显示点云,不好调整视角 3)需要手动选择平面点云

▊2.targetless方法

2.1 apollo

是基于自然场景的targetless方法,不需要手动标记,但是需要较准确初值。

92652afa-6084-11ed-8abf-dac502259ad0.jpg

(一个比较好的标定场景,包含路灯,树木,道路等物体) 注意:核心代码没有开源

github文档//github.com/ApolloAuto/apollo/blob/master/docs/quickstart/apollo_2_0_sensor_calibration_guide.md csdn博客https://blog.csdn.net/learning_tortosie/article/details/82351553?utm_medium=distribute.pc_relevant.none-task-blog-baidujs_baidulandingword-0&spm=1001.2101.3001.4242

2.2 autoware

没有target,但是需要手动标记图像和点云中的对应点,至少选择9对。

github文档:https://github.com/Autoware-AI/utilities/tree/master/autoware_camera_lidar_calibrator csdn博客:https://blog.csdn.net/learning_tortosie/article/details/82347694

2.3ExtrinsicCalib (2012c)

先将图像进行灰度化和直方图均衡化,得到灰度图像,然后根据点云的反射强度和法向量特征将点云投影为图像,使用标准化互信息衡量灰度图像和点云生成图像之间相关性。使用粒子群优化算法不断改变外参,直到粒子收敛,达到标准化互信息的最大值。

论文:http://robots.engin.umich.edu/publications/gpandey-2012a.pdf 官网:http://robots.engin.umich.edu/SoftwareData/ExtrinsicCalib局限性:对于图像,光照会影响像素亮度,且存在阴影问题;点云强度则不同,由于激光是主动式。因此,利用多视图数据,可以尽量避免光照、阴影造成的噪声,使误差函数相对平滑,便于优化。

2.4CamVox (2020c)

来自南方科技大学。图像先灰度化再提取边缘,点云先分别得到反射强度图和深度图,再提取边缘。通过ICP优化,求解最佳外参。

92704f16-6084-11ed-8abf-dac502259ad0.jpg

github//github.com/xuankuzcr/CamVox 论文:https://arxiv.org/pdf/2011.11357.pdf

2.4 livox camera calib (2020c)

来自香港大学。分别提取点云和图像中的边缘特征,然后匹配特征,最后优化求解最佳外参来更好地对齐点云边缘和图像边缘。

9287e0fe-6084-11ed-8abf-dac502259ad0.jpg

论文:https://arxiv.org/pdf/2103.01627v2.pdf 作者:Chongjian Yuan (香港大学) Github//github.com/hku-mars/livox_camera_calib 论文详细解读请参考:https://blog.csdn.net/muyiyushan/article/details/118573929

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光雷达
    +关注

    关注

    966

    文章

    3776

    浏览量

    187735
  • LIDAR
    +关注

    关注

    10

    文章

    309

    浏览量

    29078
  • 开源代码
    +关注

    关注

    0

    文章

    28

    浏览量

    2875

原文标题:开源代码和软件汇总!激光雷达和相机联合标定(2004-2021)

文章出处:【微信号:3D视觉工坊,微信公众号:3D视觉工坊】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    一文看懂激光雷达

        文章大纲 城市 NOA 成竞争高地,政策助力高阶智能驾驶加速落地 成本下探+智驾升级,2030年激光雷达市场规模有望超万亿       ·城市 NOA面临工况复杂问题,激光雷达为“优选
    的头像 发表于 06-27 08:42 72次阅读
    一文看懂<b class='flag-5'>激光雷达</b>

    硅基片上激光雷达的测距原理

    硅基光电子技术的发展可以将激光雷达系统发射模块和接收模块中分立的有源和无源器件集成在芯片上,使激光雷达体积更小、稳定性更强、成本更低,推动激光雷达在自动驾驶等领域的应用。
    发表于 04-08 10:23 249次阅读
    硅基片上<b class='flag-5'>激光雷达</b>的测距原理

    单线激光雷达和多线激光雷达区别

    单线激光雷达和多线激光雷达区别  单线激光雷达和多线激光雷达是两种常用的激光雷达技术。它们在激光
    的头像 发表于 12-07 15:48 3198次阅读

    采集激光雷达相机的初始标定数据

    包含了计算相机内参,获得标定数据,优化计算外参和雷达相机融合应用相关的代码。 本方案中使用了标定
    的头像 发表于 11-28 11:09 339次阅读
    采集<b class='flag-5'>激光雷达</b>和<b class='flag-5'>相机</b>的初始<b class='flag-5'>标定</b>数据

    TMS320F28335学习之中断和定时器的相关内容

    本次总结为中断和定时器的相关内容。除了基本的寄存器配置,初始化,中断主要是掌握三级中断制,定时器主要关注定时器的工作原理和中断时间的设置。
    的头像 发表于 11-08 10:17 1433次阅读
    TMS320F28335学习之中断和定时器的<b class='flag-5'>相关内容</b>

    LDO相关内容介绍

    在电压转换电路中,LDO和DC-DC电路是最常用的两种方式,本篇主要介绍LDO相关内容。 LDO是线性电源的一种,它可以实现电源电压的转换,不过主要用在降压领域。它的全称是Low Dropout
    的头像 发表于 11-06 11:09 392次阅读
    LDO<b class='flag-5'>相关内容</b>介绍

    音圈模组助力大疆发布全新激光雷达

    禅思L1后的升级。 据小编音圈模组获悉,禅思L2集成了框幅式激光雷达、高精度自研惯导及可见光测绘相机,赋予飞行平台更加精准高效的三维数据采集能力,配合大疆智图(DJI TERRA)软件,为需要获取高精度三维数据的用户提供可靠的
    的头像 发表于 10-20 08:59 344次阅读

    基于激光雷达相机的在线外部标定算法

    本文提出了一种自动在线激光雷达相机标定方法CFNet。CFNet是全自动的,不需要特定的校准场景、校准目标和初始校准参数。我们定义一个校准流来表示初始投影点的位置与地面真值之间的偏差。
    发表于 10-10 11:44 560次阅读
    基于<b class='flag-5'>激光雷达</b><b class='flag-5'>相机</b>的在线外部<b class='flag-5'>标定</b>算法

    小米2D激光雷达拆解图讲解

    本文档的主要内容详细介绍的是小米的2D激光雷达拆解图和讲解。
    发表于 09-22 08:07

    一文通过AEC-Q102车规级芯片测试认证了解激光雷达核心技术及行业格局

    ; 4.IATF16949、AEC-Q、PPAP等标准及流程体系对产品设计及制造的支撑功不可没; 对激光雷达而言,除核心器件激光器和探测器需要通过AEC-Q102认证,所有电子元器件都要通过AEC-Q认证,这样
    发表于 09-19 13:35

    汽车电子激光雷达相机的自动在线外参标定技术

    为了解决外参逐渐漂移的问题,提出了一种基于线的方法,可以在真实场景中实现激光雷达相机的自动在线外参标定。首先,从点云和图像中提取和过滤线特征。然后,利用自适应优化方法提供精确的外部参数。然后在KITTI基准上用地面真值对其进行
    发表于 08-31 10:50 635次阅读
    汽车电子<b class='flag-5'>激光雷达</b>和<b class='flag-5'>相机</b>的自动在线外参<b class='flag-5'>标定</b>技术

    激光雷达的基本构成 激光雷达前景分析

    激光雷达的基本构成 激光雷达前景分析 激光雷达基本构成 激光雷达是利用激光信号进行测距的设备,其基本构成包括
    的头像 发表于 08-23 16:28 2416次阅读

    固态激光雷达通常分为哪三种类型?mems固态激光雷达

    固态激光雷达通常分为哪三种类型?mems固态激光雷达  固态激光雷达是一种基于激光技术的高精度测量仪器,它利用激光器发射
    的头像 发表于 08-22 16:45 2268次阅读

    激光雷达是什么 激光雷达介绍

    激光雷达在自动驾驶应用中主要用来探测道路上的障碍物信息,把数据和信号传递给自动驾驶的大脑,再做出相应的驾驶动作,但室外常见的干扰因素如雨、雾、雪、粉尘、高低温等对激光雷达的识别造成了极大的影响。因此
    的头像 发表于 07-14 11:11 3800次阅读

    在 I/O 看未来 | 多设备相关内容三大更新

    作者 / 开发者关系工程师 Sara Hamilton 您是否错过了今年 Google I/O 大会上多设备相关内容的最新动态?别担心,我们将在本文为您介绍作为开发者不容错过的 Android
    的头像 发表于 07-12 17:40 297次阅读
    在 I/O 看未来 | 多设备<b class='flag-5'>相关内容</b>三大更新