0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Hummer EV高压线束密封失效模式的规避

线束世界 来源:聊个伍毛钱的 作者:聊个伍毛钱的 2022-11-14 09:47 次阅读

小伙伴们Hummer EV高压线束浅析已经在路上啦,过段时间发布。

编辑浅析文章时此车型出现一个不大不小(并不)的失效——高压连接器可能会腐蚀并允许水泄漏到高压电池中。电池包密封失效从早期Leaf到目前的Hummer EV均存在,虽然问题根本原因不尽相同,但基本和密封件设计与适配脱离不了干系。

本文针对密封失效模式的规避进行扩展,只不过这次不按照以前的方向去重点分析后市场解决策略。我们换一个方向看看如何通过前期设计仿真最大程度降低密封失效带来的风险,以做抛砖引玉。

下文分析及图片含文本不代表下述提及车型的最终量产状态,也不代表下述提及技术的普遍或偶然的任何情况,仅做简单的分析和讨论。

防水失效及处置

424辆2022年款GMC Hummer EV和BrightDrop EV600高压接插件可能会腐蚀并允许水泄漏到高压电池中,GMC公布的处置手段:

●涉及的车辆需要更换零件(不推荐);

●使用密封胶来密封高压连接器。

为描述便利,以Hummer EV为例进行分析。

失效位置处于电池包与高压接插件接触位置,共计五处,前一后四。使用同一厂商接插件,塑料外壳,整车位置及布置方式见下图。

47a94bb0-63ac-11ed-8abf-dac502259ad0.jpg

Hummer EV概览

处置此失效模式目前多选择密封胶密封高压连接器策略,具体操作为: ●关闭高压系统,做好绝缘防护,举升车辆,拆除底部护板,清空高压头座附近杂物并断开连接; ●使用车身溶剂清理高压插座四周,然后干燥; ●使用发动机密封胶小心密封高压集管和四个安装螺栓的周边区域,确保密封区域至少为 6.5 毫米(1/4 英寸); ●五个位置按需重复操作; ●头座插合,安装底部护板,开启高压系统。

零部件与整车试验通过的情况下不满一年电池包高压关键特性失效即失效,问题原因值得深究,以后文章会加以分析,此文不再展开。

密封仿真参数

对照实战案例前,我们简单讨论下密封仿真的相关设置参数

目前使用密封材料多为硅橡胶材料,具有不同于一般金属材料的性能。硅橡胶材料在大变形范围内表现出弹性行为,载荷与变形呈非线性关系。此外,它们在大尺度下具有非线性、不可压缩的特性,仿真难度相较金属及塑料制品高一些。

目前仿真参数解决方向有(以Ansys WB为例,个人经验不做基准):

●材料参数使用试验设备标定或厂商规格书匹配;

●打开大变形开关;

●检查收敛情况,过度震荡结果不可靠;

●尽量选用低阶单元,但需要保证无中节点后网格的数量;

●按需选择线性单元+非线性网格,推荐搭配四面体与自适应网格技术(Nonlinear Adaptive Region);

●合理设置子步和时间;

●按需使用U-P(杂交单元);

●合理设置重启动;

案例因为一些原因不做展示,有问题可以私信俺哈。

另外上述参数选用及详细理论推荐小伙伴们查阅书籍,包括但不限于: ●有限元仿真及在电连接技术中的应用; ●ANSYS Workbench有限元分析实例详解 静力学+动力学。

文献案例分析

理论简述完成,结合文献我们直接看看实例。

根据Seoul National University of Science and Technology的KyuTae Kang等发表的文章,阐述了针对对汽车接插件密封圈的密封性能仿真及设计后续优化方案案例,以推导仿真的匹配性。

根据理论(具体可参考前文章:好书推荐—接插件设计制造指南),随着密封件的接触压力和接触面积的增加,密封件的防水性能也会提高。但是,如果接触压力过大,在长期使用过程中,由于应力松弛,接触压力会迅速下降,从而导致防水性能迅速下降,同时也存在接插件的插拔力增大及其他问题。反之,如果接触压力设计过低,则难以满足初始防水等级。

设计端输入需要仿真的项目为插头座密封圈在插头组装时及头座插入时的状态与接触压力,与标准试样搭配一定拉伸量进行测试后的力学性能作比较(密封圈设计为过盈装配),以确定设计合理性。

仿真目标

接插件设计目标为IP69,引用标准为Road Vehicles - Degrees of Protection (IP code) -Protection of Electrical Equipment against Foreign Objects, Water and Access, ISO 20653, 2013,需求接触压力>0.1 MPa,详细参数于下图。这里根据俺的查询,文章引用标准中的参数是有问题的,但是为了文章流畅性暂且放一边,以仿真拟合度为基准跟着文章思路继续推导。

490bd2b6-63ac-11ed-8abf-dac502259ad0.png

文章截取

仿真之前先对试样进行仿真所需参数进行标定,试验选择了KS M 6782:“硫化橡胶拉伸试验方法”中提出的3号哑铃试件进行制样,使用 CCD 相机以非接触方式测量尺寸变化。

测试结果表明:密封试验片的应力在30%的应变下比标准试验片的应力值低30%,会极大影响密封材料的性能,应变30%这个参数基本也是部分材料经验设计标准了,大家后续设计可以参考,互证文章详见前文:酸不仅咂嘴,还要漏水!

测试完成后的参数转换后输入仿真软件,具体参数:经过实际测试曲线与软件中Mooney Rivlin和 Ogden拟合曲线的对比,选择Mooney Rivlin模型,Mooney-Rivlin材料常数D1 =0、C01 =0.241和C10=0.0142。至于为啥这两种模型选取其中一种以及剩下的其他材料模型的合理选取篇幅有限就不展开啦,大家可以翻阅上述相关书籍。

其他处理上,因为密封设计为轴对称,遂选取四分之一模型降低运算量,密封支撑与压缩件作为2D壳刚体单元处理,密封圈作为3D 实体处理。整个仿真运动过程分为两部分,第一部分为密封圈装入插头支撑部位,简化为原地支撑。第二部分为插座压缩面压缩密封圈,与实际不同的是,将密封圈给定强制位移装入插头座预定的缝隙之中,且摩擦设置为0(文献解释因密封圈有润滑油,此处参数有待商榷)。

仿真结果:

●第一部分完成后,密封圈的直线部分几乎没有接触压力,但在弯曲部分的开始处产生了0.3MPa的接触压力;

●第二部分完成后,发现49.1%的最大应变率集中分布在密封圈弯曲部分,根据前文描述压缩量经验发现,此处有可能出现应力松弛并发防水失效;

493ee296-63ac-11ed-8abf-dac502259ad0.jpg

压缩量结果

●特别的对第二部分取点分析,发现下图中A/B/C三点中,在密封的 A 点到 B 点的部分接触压力保持在0.48 MPa,但B点的最小接触压力略有下降。此外,确认了从B点到C点对应于弯曲部分的接触压力高达0.47 MPa(≈4.7 bar)至0.6 MPa(≈6 bar)。因此,由于是最小接触压力决定了密封件的气密性能,因此下部的气密性能为4.7 bar对应于最小接触压力。

4961a9de-63ac-11ed-8abf-dac502259ad0.jpg

区域一接触压力

49809aec-63ac-11ed-8abf-dac502259ad0.jpg

区域二接触压力

●同样的,在密封的A点到B点的截面,保持1.31 MPa的接触压力,B点的最小接触压力降低到0.47 MPa,在圆的中间,它增加到1.38 MPa以上,然后在 C 点急剧下降至 1.27 MPa。

在密封件上下的接触压力分布中,可以看出密封件上部即最大的接触压力大约是密封件下部即最小的三倍。因此,木桶的短板成为问题突破口。

●另外,上A点和下B点的接触压力降低被认为是由于密封件弯曲部分发生过度变形和应力不平衡造成的。因此,判断为在满足保持密封件的气密性能的接触压力的同时,需要同时考虑最小化应力不平衡和变形。

对实物进行验证,确认约4.3 bar发生泄漏,印证了仿真结果。同时与仿真结果对比,对比4.7 bar误差约为9%。与初始拉伸对比,圆形部分的有效应力和应变分别最高,分别为 1.3 MPa 和 50%。这与初始拉伸拉伸时的应力应变值1.2 MPa和49.1%相差不大,因此认为弯曲部分的应力应变集中是由于初始拉伸过大所致。

同时对比高温老化测试,对于与本密封相同的试验件在120°C 老化500小时后出现应力松弛,确认了研究拉伸应变发生在弯曲部分,所以在弯曲部分产生的过度应力和应变,接插件插拔时密封件会变得松动,出现从密封件滑移和翻卷的问题。

优化设计&碎碎念

根据上文献已知参数推导,满足接触压力>0.1 MPa且最小化变形成为优化目标,前述结果表明目前满足接触压力要求但变形超过预期(>30%) 。

优化设计首先确定密封圈设计的最佳初始张力,具体操作为:将密封初始张力的应变从23%依次降低1%至10%,进行仿真分析并配合最大压力与最小压力之差尽量小+插合时考虑密封件滚动和上下接触压力的分布的叠加条件以确定最佳初始张力,仿真结果如下图。

49d46e9c-63ac-11ed-8abf-dac502259ad0.png

仿真数据

由此可以确认选择11%应变率的初始张力是最佳的(如果以此推导配合IP密封标准要求,实际应满足标准为IP67非前文引用文献的IP69)。

后续进行密封截面分析,将下图所示R1、R2、H1、H2 和 P 等差更改–0.1mm、0mm和 0.1 mm,将 d 等差更改 –0.05 mm、0 mm 和0.05mm同时进行分析,再通过密封关联因子确定密封上部R角与唇口之间的间距对密封的影响较大,通过Minitab 16次交叉分析后得到优解。

49ea5e00-63ac-11ed-8abf-dac502259ad0.png

密封关联因素

4a0a3d56-63ac-11ed-8abf-dac502259ad0.png

关联因子

对比优化模型与原模型的表面接触压力图,可以得出结论:

●在最小和最大接触压力点的接触压力差值上,最优模型中长轴和短轴的接触压力比初始模型从 0.19 MPa 下降到 0.11 MPa,对比为密封与支撑面接触部分;

●与初始模型相比,优化模型的长轴和短轴接触压力从优化模型的0.21 MPa 下降到 0.05 MPa,对比为密封与对插端接触部分;

●与初始模型相比,上部和下部的最小和最大接触压力差分别减少了42%和76%,弯曲部分的最大应变减少了33.8%。

4a2aabb8-63ac-11ed-8abf-dac502259ad0.png

优化前后对比

此次改进设计在满足防水性能的前提下,通过尺寸调整优化密封圈弯曲部分的接触压力差,降低密封失效风险。

根据上述文献不难看出,考虑边界的密封性能仿真可以对设计带来指导性改进,但实战中个人认为还需要考量:

●将密封圈应变和制造特征(公差等因素)带入计算,求取上下限;

●考虑密封圈所受压力;

●考虑密封面安全系数,合理取值;

●按需考虑关联区域表面粗糙度与表面清洁度。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CCD
    CCD
    +关注

    关注

    32

    文章

    870

    浏览量

    141901
  • 连接器
    +关注

    关注

    98

    文章

    13916

    浏览量

    135223
  • 高压电池
    +关注

    关注

    0

    文章

    23

    浏览量

    10914

原文标题:以案例出发探索密封设计仿真

文章出处:【微信号:wiring-world,微信公众号:线束世界】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电动汽车高压线的工艺特点主要包括以下几点:

    电动汽车高压线负责连接高压系统上的部件,作为高压电源传递的媒介。用于传输电能、屏蔽外界信号干扰,是电动汽车动力传输的载体。在设计和制造过程中需要考虑线路保护、
    的头像 发表于 09-06 14:28 152次阅读

    新能源车用高压线设计有何特别之处?

    汽车高压线由众多精细铜线组成,这种多铜线集成的电缆导体结构不仅显著提升了电导率,还有效应对了交流电通过导体时产生的“趋肤效应”,该效应在高频率下尤为显著。此外,鉴于新能源汽车高压线
    的头像 发表于 09-05 16:25 148次阅读

    新能源汽车高压线全面解析:作用、布局与定制选型指南

    新能源汽车高压线是连接电池、电机和其他高压设备的关键组件,承担着传输电能的重要任务。它确保了电能的高效优质传输,并屏蔽外界信号干扰,保障车辆的安全运行。 新能源汽车高压线
    的头像 发表于 09-04 11:07 226次阅读

    新能源汽车使用铝芯高压线的应用分析

    新能源汽车行业的快速发展推动了对其核心组件之一——大电流高压线的需求增长。这种线负责传输信号和数据,对车辆的性能和安全性起着至关重要的作用。随着在新能源汽车中的应用比例提高,高压线
    的头像 发表于 08-30 17:23 204次阅读

    新能源汽车电池包内高压线的布局

    当然,整车布置电池包内需要用到高压线,电机控制器、充电机、动力电池、充电插座等设备之间也需要通过高压动力线相连。东莞派歌锐电气有限公司是一家专业制造汽车
    的头像 发表于 08-26 14:18 286次阅读
    新能源汽车电池包内<b class='flag-5'>高压线</b><b class='flag-5'>束</b>的布局

    新能源汽车高压线的分类,分为哪几种?

    新能源汽车高压线的分类主要包括充电线、动力线和信号线,每种线都有其独特的功能和重要性。
    的头像 发表于 08-15 16:51 387次阅读
    新能源汽车<b class='flag-5'>高压线</b><b class='flag-5'>束</b>的分类,分为哪几种?

    派歌锐汽车高压线更适用于新能源汽车高压系统设备连接

    对于新能源汽车制造商而言,选择高质量、高性能的汽车高压线,不仅是对消费者负责的表现,也是推动整个行业向前发展的关键一步。派歌锐自2015年便开始投入资源开始汽车高压线的研发,凭借其
    的头像 发表于 08-15 09:26 213次阅读
    派歌锐汽车<b class='flag-5'>高压线</b><b class='flag-5'>束</b>更适用于新能源汽车<b class='flag-5'>高压</b>系统设备连接

    派歌锐:新能源电动汽车高压线线径设计考虑因素

    电动汽车上的高压线数量很多,连接控制器和电机的是电机高压线,连接控制器和电池的是电池高压线,而充电高压线连接充电机和电池。 为了屏蔽电磁
    的头像 发表于 08-14 17:25 273次阅读
    派歌锐:新能源电动汽车<b class='flag-5'>高压线</b><b class='flag-5'>束</b>线径设计考虑因素

    新能源电动汽车高压线为什么要进行绝缘检测?

    电动汽车高压线是汽车电路的网络主体,负责汽车内部高压电子电气部件的连接。新能源汽车线大多都是由电缆、插件和包裹胶带组成。不仅要确保电信号的正常传输,更要确保电路的可靠连接,向电子电
    的头像 发表于 08-13 17:24 350次阅读
    新能源电动汽车<b class='flag-5'>高压线</b><b class='flag-5'>束</b>为什么要进行绝缘检测?

    汽车高压线和低压线的差异

    汽车高压线和低压线作为汽车电气系统中的重要组成部分,各自承担着不同的功能和作用。它们在电压等级、应用场景、技术要求以及设计生产等多个方面存在显著差异。
    的头像 发表于 07-25 10:44 969次阅读

    汽车高压线气密性检测仪行业解决方案

    在汽车行业,高压线是电动汽车和混合动力汽车的重要组成部分,负责传输高压电能来驱动汽车。但由于高压线的工作环境和功能特点,其气密性检测尤为
    的头像 发表于 07-24 13:38 159次阅读
    汽车<b class='flag-5'>高压线</b><b class='flag-5'>束</b>气密性检测仪行业解决方案

    纯电动汽车高压线及生产工艺优化方案

    高压线高压系统上各个部件相连,作为高压电源传输的媒介,是电动汽车上动力输出的主要载体,主要用于传输电能及屏蔽外界信号干扰。
    发表于 04-29 14:53 1262次阅读
    纯电动汽车<b class='flag-5'>高压线</b><b class='flag-5'>束</b>及生产工艺优化方案

    新能源汽车高压线设计方案分享

    新能源汽车的高压线设计采用双轨制设计,由于动力电池输出电压为高压,超出人体安全电压,因此车身不能作为高压线整车搭铁点,在
    发表于 04-18 10:47 1011次阅读
    新能源汽车<b class='flag-5'>高压线</b><b class='flag-5'>束</b>设计方案分享

    汽车高压线如何应对电磁干扰

    汽车高压线分布于整车环境,是汽车内部电磁干扰的主要来源,而其本身也时常受到电磁的抗干扰。所以汽车高压线如何应对电磁干扰尤为重要。
    发表于 04-02 09:57 765次阅读
    汽车<b class='flag-5'>高压线</b><b class='flag-5'>束</b>如何应对电磁干扰

    新能源汽车的高压线设计方案

    新能源汽车的高压线设计采用双轨制设计,由于动力电池输出电压为高压,超出人体安全电压,因此车身不能作为高压线整车搭铁点,在
    发表于 12-15 09:32 1295次阅读
    新能源汽车的<b class='flag-5'>高压线</b><b class='flag-5'>束</b>设计方案