0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

OpenHarmony集成OCR三方库实现文字提取

OpenAtom OpenHarmony 来源:未知 2022-11-14 21:25 次阅读

点击蓝字 ╳ 关注我们

开源项目 OpenHarmony是每个人的 OpenHarmony 624cd338-641f-11ed-8abf-dac502259ad0.jpg

郭岳峰

深圳开鸿数字产业发展有限公司

OS框架开发工程师

以下内容来自嘉宾分享,不代表开放原子开源基金会观点

1.简介

Tesseract(Apache 2.0 License)是一个可以进行图像OCR识别的C++库,可以跨平台运行 。本样例基于Tesseract库进行适配,使其可以运行在OpenAtom OpenHarmony(以下简称“OpenHarmony”)上,并新增N-API接口供上层应用调用,这样上层应用就可以使用Tesseract提供的相关功能。

2.效果展示

识别文字 身份信息识别 629c32ca-641f-11ed-8abf-dac502259ad0.png   提取文字信息到本地文件  62f77702-641f-11ed-8abf-dac502259ad0.png    

相关代码已经上传至SIG仓库,链接如下:

https://gitee.com/openharmony-sig/knowledge_demo_temp/tree/master/FA/OCRDemo

3.目录结构

6330784a-641f-11ed-8abf-dac502259ad0.png  

4.调用流程

634df140-641f-11ed-8abf-dac502259ad0.png   调用过程主要涉及到三方面,首先应用层实现样例的效果,包括页面的布局和业务逻辑代码;中间层主要起桥梁的作用,提供N-API接口给应用调用,再通过三方库的接口去调用具体的实现;Native层使用了三方库Tesseract提供具体的实现功能。  

5.源码分析

本样例源码的分析主要涉及到两个方面,一方面是N-API接口的实现,另一方面是应用层的页面布局和业务逻辑。N-API实现 1. 首先在index.d.ts文件中定义好接口
/**
 * 初始化文字识别引擎
 * @param lang 识别的语言, eg:eng、chi_sim、 eng+chi_sim,为Null或不传则为中英文(eng+chi_sim)
 * @param trainDir 训练模型目录,为Null或不传则为默认目录
 *
 * @return 初始化是否成功 0=>成功,-1=>失败
 */
export const initOCR: (lang: string, trainDir: string) => Promise<number>;


export const initOCR: (lang: string, trainDir: string, callback: AsyncCallback<number>) => void;


/**
 * 开始识别
 * @param imagePath 图片路径(当前支持的图片格式为png, jpg, tiff)
 *
 * @return 识别结果
 */
export const startOCR: (imagePath: string) => Promise<string>;
export const startOCR: (imagePath: string, callback: AsyncCallback<string>) => void;




/**
 * 销毁资源
 */
exportconstdestroyOCR:()=>void;
代码中可以看出N-API接口initOCR和startOCR都采用了两种方式,一种是Promise,一种是Callback的方式。在样例的应用层,使用的是它们的Callback方式。 2 注册N-API模块和接口
EXTERN_C_START
static napi_value Init(napi_env env, napi_value exports) {
napi_property_descriptor desc[] = {
{
"initOCR", nullptr, InitOCR, nullptr, nullptr, nullptr, napi_default, nullptr
},
{
"startOCR", nullptr, StartOCR, nullptr, nullptr, nullptr, napi_default, nullptr
},
{
"destroyOCR", nullptr, DestroyOCR, nullptr, nullptr, nullptr, napi_default, nullptr
},
{
};
napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc);
return exports;
}
EXTERN_C_END


static napi_module demoModule = {
.nm_version = 1,
.nm_flags = 0,
.nm_filename = nullptr,
.nm_register_func = Init,
.nm_modname = "tesseract",
.nm_priv = ((void *)0),
.reserved = {
0
},
};


extern "C" __attribute__((constructor)) void RegisterHelloModule(void) {
napi_module_register(& demoModule);
}
通过nm_modname定义模块名,nm_register_func注册接口函数,在Init函数中指定了JS中initOCR,startOCR,destroyOCR对应的本地实现函数,这样就可以在对应的本地实现函数中调用三方库Tesseract的具体实现了。 3 以startOCR的Callback方式为例介绍N-API中的具体实现
static napi_value StartOCR(napi_env env, napi_callback_info info) {
    OH_LOG_ERROR(LogType::LOG_APP, "OCR StartOCR 111");
    size_t argc = 2;
    napi_value args[2] = { nullptr };
  //1. 获取参数
    napi_get_cb_info(env, info, &argc, args, nullptr, nullptr);




    //2. 共享数据
    auto addonData = new StartOCRAddOnData{
        .asyncWork = nullptr,
    };
    //3. N-API类型转成C/C++类型
    char imagePath[1024] = { 0 };
    size_t length = 0;
    napi_get_value_string_utf8(env, args[0], imagePath, 1024, &length);


    addonData->args0 = string(imagePath);


    napi_create_reference(env, args[1], 1, &addonData->callback);


    //4. 创建async work
    napi_value resourceName = nullptr;
    napi_create_string_utf8(env, "startOCR", NAPI_AUTO_LENGTH, &resourceName);
    napi_create_async_work(env, nullptr, resourceName, executeStartOCR, completeStartOCRForCallback, (void *)addonData, &addonData->asyncWork);


    //将创建的async work加到队列中,由底层调度执行
    napi_queue_async_work(env, addonData->asyncWork);


    napi_value result = 0;
    napi_get_null(env, &result);


    return result;
}
首先通过napi_get_cb_info方法获取JS侧传入的参数信息,将参数转成C++对应的类型,然后创建异步工作,异步工作的方法参数中包含,执行的函数以及函数执行完成的回调函数。 我们看一下执行函数
static void executeStartOCR(napi_env env, void* data) {
    //通过data来获取数据
    StartOCRAddOnData * addonData = (StartOCRAddOnData *)data;
    napi_value resultValue;
    try {
        if (api != nullptr) {
            //调用具体的实现,读取图片像素
            PIX * pix = pixRead((const char*)addonData->args0.c_str());
            //设置api的图片像素
            api->SetImage(pix);


            //调用文字提取接口,获取图片中的文字
            char * result = api->GetUTF8Text();
            addonData->result = result;


            //释放资源
            pixDestroy (& pix);
            delete[] result;
        }
    } catch (std::exception e) {
        std::string error = "Error: ";
        if (initResult != 0) {
            error += "please first init tesseractocr.";
        } else {
            error += e.what();
        }
        addonData->result = error;
    }
}
这个方法中通过data获取JS传入的参数,然后调用Tesseract库中提供的接口,调用具体的文字提取功能,获取图片中的文字。 执行完成后,会回调到completeStartOCRForCallback,在这个方法中会将执行函数中返回的结果转换为JS的对应类型,然后通过Callback的方式返回。
static void completeStartOCRForCallback(napi_env env, napi_status status, void * data) {
    StartOCRAddOnData * addonData = (StartOCRAddOnData *)data;
    napi_value callback = nullptr;
    napi_get_reference_value(env, addonData->callback, &callback);
    napi_value undefined = nullptr;
    napi_get_undefined(env, &undefined);
    napi_value result = nullptr;
    napi_create_string_utf8(env, addonData->result.c_str(), addonData->result.length(), &result);


    //执行回调函数
    napi_value returnVal = nullptr;
    napi_call_function(env, undefined, callback, 1, &result, &returnVal);


    //删除napi_ref对象
    if (addonData->callback != nullptr) {
        napi_delete_reference(env, addonData->callback);
    }


    //删除异步工作项
    napi_delete_async_work(env, addonData->asyncWork);
    delete addonData;
}
应用层实现 应用层主要分为三个模块:动物图片文字识别,身份信息识别,提取文字到本地文件 1. 动物图片文字识别
build() {
    Column() {
      Row() {
        Text('点击图片进行文字提取  提取结果 :').fontSize('30fp').fontColor(Color.Blue)
        Text(this.ocrResult).fontSize('50fp').fontColor(Color.Red)
      }.margin('10vp').height('10%').alignItems(VerticalAlign.Center)


      Grid() {
        ForEach(this.images, (item, index) => {
          GridItem() {
            AnimalItem({
              path1: item[0],
              path2: item[1]
            });
          }
        })
      }
      .padding({left: this.columnSpace, right: this.columnSpace})
      .columnsTemplate("1fr 1fr 1fr")      // Grid宽度均分成3份
      .rowsTemplate("1fr 1fr")     // Grid高度均分成2份
      .rowsGap(this.rowSpace)                  // 设置行间距
      .columnsGap(this.columnSpace)            // 设置列间距
      .width('100%')
      .height('90%')
    }
    .backgroundColor(Color.Pink)
}
布局主要使用了Grid的网格布局,每个Item都是对应的图片,通过点击图片可以对点击图片进行文字提取,将提取出的文字显示在标题栏。 2. 身份信息识别
build() {
    Row() {
      Column() {
        Image('/common/idImages/aobamao.jpg')
          .onClick(() => {
            //点击图片进行信息识别
            console.log('OCR begin dialog open 111');
            this.ocrDialog.open();
            ToolUtils.ocrResult(ToolUtils.aobamao, (result) => {
              console.log('111 OCR result = ' + result);
              this.result = result;
              this.ocrDialog.close();
            });
          })
          .margin('10vp')
          .objectFit(ImageFit.Auto)
          .height('50%')


        Image('/common/idImages/weixiaobao.jpg')
          .onClick(() => {
            //点击图片进行信息识别
            this.ocrDialog.open();
            ToolUtils.ocrResult(ToolUtils.weixiaobao, (result) => {
              console.log('111 OCR result = ' + result);
              this.result = result;
              this.ocrDialog.close();
            });
          })
          .margin('10vp')
          .objectFit(ImageFit.Auto)
          .height('50%')
      }
      .width(this.screenWidth/2)
      .padding('20vp')


      Column() {
        Text(this.title).height('10%').fontSize('30fp').fontColor(this.titleColor)


        Column() {
          Text(this.result)
            .fontColor('#0000FF')
            .fontSize('50fp')
        }.justifyContent(FlexAlign.Center).alignItems(HorizontalAlign.Center).height('90%')
      }
      .justifyContent(FlexAlign.Start)
      .width('50%')


    }
    .width('100%')
    .height('100%')
}
身份信息识别的布局最外层是一个水平布局,分为左右两部分,左边的子布局是垂直布局,里面是两张不同的身份证图片,右边子布局也是垂直布局,主要是标题区和识别结果的内容显示区。 3. 提取文字到本地文件
Row() {
      Column() {
        Image('/common/save2FileImages/testImage1.png')
          .onClick(() => {
            //点击图片进行信息识别
            ToolUtils.ocrResult(ToolUtils.testImage1, (result) => {
              let path = this.dir + 'ocrresult1.txt';
              try {
                let fd = fileio.openSync(path, 0o100 | 0o2, 0o666);
                fileio.writeSync(fd, result);
                fileio.closeSync(fd);
                this.displayText = '文件写入' + path;
              } catch (e) {
                console.log('OCR fileio error = ' + e);
              }
            });
          })
        Image('/common/save2FileImages/testImage2.png')
          .onClick(() => {
            //点击图片进行信息识别
            ToolUtils.ocrResult(ToolUtils.testImage2, (result) => {
              let path = this.dir + 'ocrresult2.txt';
              let fd = fileio.openSync(path, 0o100 | 0o2, 0o666);
              fileio.writeSync(fd, result);
              fileio.closeSync(fd);
              this.displayText = '文件写入' + path;
            });
          })
      }
      Column() {
        Text(this.title)
        Column() {
          Text(this.displayText)
        }
      }
}
这个功能首先通过接口识别出图片中的文字,然后再通过fileio的能力将文字写入文件中。

6.总结

样例通过Native的方式将C++的三方库集成到应用中,通过N-API方式提供接口给上层应用调用。对于依赖三方库能力的应用,都可以使用这种方式来进行,移植三方库到Native,通过N-API提供接口给应用调用。 关于样例开发,我之前还分享过《如何利用OpenHarmony ArkUI的Canvas组件实现涂鸦功能?》、《如何通过OpenHarmony的音频模块实现录音变速功能?》欢迎感兴趣的开发者进行了解并与我交流样例开发经验。


原文标题:OpenHarmony集成OCR三方库实现文字提取

文章出处:【微信公众号:OpenAtom OpenHarmony】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 鸿蒙
    +关注

    关注

    57

    文章

    2339

    浏览量

    42804
  • OpenHarmony
    +关注

    关注

    25

    文章

    3713

    浏览量

    16252

原文标题:OpenHarmony集成OCR三方库实现文字提取

文章出处:【微信号:gh_e4f28cfa3159,微信公众号:OpenAtom OpenHarmony】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    三方移植OpenHarmony过程

    战码先锋,PR征集令(以下简称“战码先锋”)第二期正如火如荼地进行中,涉及OpenAtom OpenHarmony(以下简称“OpenHarmony”)主干仓、SIG仓、三方,共计1
    的头像 发表于 09-22 10:11 2680次阅读

    使用OpenHarmonyNDK移植三方Speexdsp

    大家好,我是一名即将本科毕业的OpenHarmony开发者,去年暑假利用了两个月时间移植了一个语音处理的三方Speexdsp到OpenHarmony标准系统。主要为其编写了`buil
    的头像 发表于 05-16 10:18 2029次阅读
    使用<b class='flag-5'>OpenHarmony</b>NDK移植<b class='flag-5'>三方</b><b class='flag-5'>库</b>Speexdsp

    快速移植OpenHarmony三方芯片平台的方法

    移植概述本文面向希望将OpenHarmony移植到三方芯片平台硬件的开发者,介绍一种借助三方芯片平台自带Linux内核的现有能力,快速移植OpenHarmony
    发表于 04-12 11:08

    【PIMF】OpenHarmony啃论文俱乐部—盘点开源鸿蒙三方【1】

    OpenHarmony third_party三方三方开源是封装的软件功能,可以避免重复造轮子、提升软件开发效率。
    发表于 06-17 19:48

    【PIMF】OpenHarmony啃论文俱乐部—盘点开源鸿蒙三方【2】

    OpenHarmony third_party三方三方(开源)是封装的软件功能,可以避免
    发表于 06-29 16:44

    4步成功将三方——speexdsp移植到OpenHarmony

    归)进行分享,他在完成了一个三方OpenHarmony标准系统上的移植工作后,总结了以下经验。四步实现三方
    发表于 09-27 12:02

    OpenHarmony集成OCR三方实现文字提取

    ;#125;这个功能首先通过接口识别出图片中的文字,然后再通过fileio的能力将文字写入文件中。6. 总结样例通过Native的方式将C++的三方
    发表于 11-15 12:09

    OpenHarmony三方适配指南

    本文以OpenHarmony-3.2-Beta4上适配modbus编译动态为例。获取三方使用之前要做好代码溯源,确认可用的版本,开源许可和发布方式等。通过正确的路径获取源码,可以是
    发表于 04-07 09:12

    OpenAtom OpenHarmony 三方创建发布及安全隐私检测

    三方进行功能性测试,如果三方没有真正的功能实现或其功能无法在OpenHarmony上验证,
    发表于 11-13 17:27

    openharmony三方组件适配移植的文字组合拆分库

    项目介绍 项目名称: MatchView 所属系列: openharmony的第三方组件适配移植 功能: 是一款由进度条来控制文字的组合和拆分的 项目移植状态: 主功能完成 调用差异
    发表于 03-30 10:59 0次下载

    基于openharmony实现绑定ability和fraction页面切换的三方

    项目介绍 项目名称:Alligator 所属系列:openharmony的第三方组件适配移植 功能:通过注解处理器实现一套绑定ability和fraction页面切换的三方
    发表于 04-08 10:21 1次下载

    总结移植三方OpenHarmony的经验

    三方主要是基于标准 Linux 系统的 c/c++ 开源,所以三方的移植工作,首先是在标准 Linux 系统搭建环境、编译与验证,然后
    的头像 发表于 05-07 15:52 6252次阅读

    鸿蒙三方适配指南

    本文以 OpenHarmony-3.2-Beta4 上适配 modbus 编译动态为例。 获取三方 使用之前要做好代码溯源,确认可用的版本,开源许可和发布方式等。 通过正确的路径获
    的头像 发表于 02-14 09:33 3459次阅读

    【开源三方】bignumber.js:一个大数数学

    点击蓝字 ╳ 关注我们 开源项目 OpenHarmony 是每个人的 OpenHarmony OpenAtom OpenHarmony (以下简称“OpenHarmony”)
    的头像 发表于 08-18 21:05 889次阅读

    【开源三方】crypto-js加密算法库的使用方法

    点击蓝字 ╳ 关注我们 开源项目 OpenHarmony 是每个人的 OpenHarmony OpenAtom OpenHarmony(简称“OpenHarmony”)
    的头像 发表于 09-07 21:10 1432次阅读