0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ElasticSearch深度分页详解

OSC开源社区 来源:OSC开源社区 作者:何守优 2022-11-17 09:53 次阅读

1 前言

ElasticSearch 是一个实时的分布式搜索与分析引擎,常用于大量非结构化数据的存储和快速检索场景,具有很强的扩展性。纵使其有诸多优点,在搜索领域远超关系型数据库,但依然存在与关系型数据库同样的深度分页问题,本文就此问题做一个实践性分析探讨。

2 from + size 分页方式

from + size 分页方式是 ES 最基本的分页方式,类似于关系型数据库中的 limit 方式。from 参数表示:分页起始位置;size 参数表示:每页获取数据条数。例如:

GET /wms_order_sku/_search
{
  "query": {
    "match_all": {}
  },
  "from": 10,
  "size": 20
}
该条 DSL 语句表示从搜索结果中第 10 条数据位置开始,取之后的 20 条数据作为结果返回。这种分页方式在 ES 集群内部是如何执行的呢? 在 ES 中,搜索一般包括 2 个阶段,Query 阶段和 Fetch 阶段,Query 阶段主要确定要获取哪些 doc,也就是返回所要获取 doc 的 id 集合,Fetch 阶段主要通过 id 获取具体的 doc。

2.1 Query 阶段

d1d8917e-65b4-11ed-8abf-dac502259ad0.png 如上图所示,Query 阶段大致分为 3 步:

第一步:Client 发送查询请求到 Server 端,Node1 接收到请求然后创建一个大小为 from + size 的优先级队列用来存放结果,此时 Node1 被称为 coordinating node(协调节点);

第二步:Node1 将请求广播到涉及的 shard 上,每个 shard 内部执行搜索请求,然后将执行结果存到自己内部的大小同样为 from+size 的优先级队列里;

第三步:每个 shard 将暂存的自身优先级队列里的结果返给 Node1,Node1 拿到所有 shard 返回的结果后,对结果进行一次合并,产生一个全局的优先级队列,存在 Node1 的优先级队列中。(如上图中,Node1 会拿到 (from + size) * 6 条数据,这些数据只包含 doc 的唯一标识_id 和用于排序的_score,然后 Node1 会对这些数据合并排序,选择前 from + size 条数据存到优先级队列);

2.2 Fetch 阶段

d1e84ff6-65b4-11ed-8abf-dac502259ad0.png

如上图所示,当 Query 阶段结束后立马进入 Fetch 阶段,Fetch 阶段也分为 3 步:

第一步:Node1 根据刚才合并后保存在优先级队列中的 from+size 条数据的 id 集合,发送请求到对应的 shard 上查询 doc 数据详情;

第二步:各 shard 接收到查询请求后,查询到对应的数据详情并返回为 Node1;(Node1 中的优先级队列中保存了 from + size 条数据的_id,但是在 Fetch 阶段并不需要取回所有数据,只需要取回从 from 到 from + size 之间的 size 条数据详情即可,这 size 条数据可能在同一个 shard 也可能在不同的 shard,因此 Node1 使用 multi-get 来提高性能)

第三步:Node1 获取到对应的分页数据后,返回给 Client;

2.3 ES 示例

依据上述我们对 from + size 分页方式两阶段的分析会发现,假如起始位置 from 或者页条数 size 特别大时,对于数据查询和 coordinating node 结果合并都是巨大的性能损耗。 例如:索引 wms_order_sku 有 1 亿数据,分 10 个 shard 存储,当一个请求的 from = 1000000, size = 10。在 Query 阶段,每个 shard 就需要返回 1000010 条数据的_id 和_score 信息,而 coordinating node 就需要接收 10 * 1000010 条数据,拿到这些数据后需要进行全局排序取到前 1000010 条数据的_id 集合保存到 coordinating node 的优先级队列中,后续在 Fetch 阶段再去获取那 10 条数据的详情返回给客户端。 分析:这个例子的执行过程中,在 Query 阶段会在每个 shard 上均有巨大的查询量,返回给 coordinating node 时需要执行大量数据的排序操作,并且保存到优先级队列的数据量也很大,占用大量节点机器内存资源。

2.4 实现示例

d1f8b030-65b4-11ed-8abf-dac502259ad0.png

private SearchHits getSearchHits(BoolQueryBuilder queryParam, int from, int size, String orderField) {
        SearchRequestBuilder searchRequestBuilder = this.prepareSearch();
        searchRequestBuilder.setQuery(queryParam).setFrom(from).setSize(size).setExplain(false);
        if (StringUtils.isNotBlank(orderField)) {
            searchRequestBuilder.addSort(orderField, SortOrder.DESC);
        }
        log.info("getSearchHits searchBuilder:{}", searchRequestBuilder.toString());
        SearchResponse searchResponse = searchRequestBuilder.execute().actionGet();
        log.info("getSearchHits searchResponse:{}", searchResponse.toString());
        return searchResponse.getHits();
    }

2.5 小结

其实 ES 对结果窗口的返回数据有默认 10000 条的限制(参数:index.max_result_window = 10000),当 from + size 的条数大于 10000 条时 ES 提示可以通过 scroll 方式进行分页,非常不建议调大结果窗口参数值。 d23e80b0-65b4-11ed-8abf-dac502259ad0.png

3 Scroll 分页方式

scroll 分页方式类似关系型数据库中的 cursor(游标),首次查询时会生成并缓存快照,返回给客户端快照读取的位置参数(scroll_id),后续每次请求都会通过 scroll_id 访问快照实现快速查询需要的数据,有效降低查询和存储的性能损耗。

3.1 执行过程

scroll 分页方式在 Query 阶段同样也是 coordinating node 广播查询请求,获取、合并、排序其他 shard 返回的数据_id 集合,不同的是 scroll 分页方式会将返回数据_id 的集合生成快照保存到 coordinating node 上。Fetch 阶段以游标的方式从生成的快照中获取 size 条数据的_id,并去其他 shard 获取数据详情返回给客户端,同时将下一次游标开始的位置标识_scroll_id 也返回。这样下次客户端发送获取下一页请求时带上 scroll_id 标识,coordinating node 会从 scroll_id 标记的位置获取接下来 size 条数据,同时再次返回新的游标位置标识 scroll_id,这样依次类推直到取完所有数据。

3.2 ES 示例

第一次查询时不需要传入_scroll_id,只要带上 scroll 的过期时间参数(scroll=1m)、每页大小(size)以及需要查询数据的自定义条件即可,查询后不仅会返回结果数据,还会返回_scroll_id。

GET /wms_order_sku2021_10/_search?scroll=1m
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "shipmentOrderCreateTime": {
              "gte": "2021-10-04 0000",
              "lt": "2021-10-15 0000"
            }
          }
        }
      ]
    }
  },
  "size": 20
}
d26179d0-65b4-11ed-8abf-dac502259ad0.png

第二次查询时不需要指定索引,在 JSON 请求体中带上前一个查询返回的 scroll_id,同时传入 scroll 参数,指定刷新搜索结果的缓存时间(上一次查询缓存 1 分钟,本次查询会再次重置缓存时间为 1 分钟)
GET /_search/scroll
{
  "scroll":"1m",
  "scroll_id" : "DnF1ZXJ5VGhlbkZldGNoIAAAAAJFQdUKFllGc2E4Y2tEUjR5VkpKbkNtdDFMNFEAAAACJj74YxZmSWhNM2tVbFRiaU9VcVpDUWpKSGlnAAAAAiY--F4WZkloTTNrVWxUYmlPVXFaQ1FqSkhpZwAAAAJMQKhIFmw2c1hwVFk1UXppbDhZcW1za2ZzdlEAAAACRUHVCxZZRnNhOGNrRFI0eVZKSm5DbXQxTDRRAAAAAkxAqEcWbDZzWHBUWTVRemlsOFlxbXNrZnN2UQAAAAImPvhdFmZJaE0za1VsVGJpT1VxWkNRakpIaWcAAAACJ-MhBhZOMmYzWVVMbFIzNkdnN1FwVXVHaEd3AAAAAifjIQgWTjJmM1lVTGxSMzZHZzdRcFV1R2hHdwAAAAIn4yEHFk4yZjNZVUxsUjM2R2c3UXBVdUdoR3cAAAACJ5db8xZxeW5NRXpHOFR0eVNBOHlOcXBGbWdRAAAAAifjIQkWTjJmM1lVTGxSMzZHZzdRcFV1R2hHdwAAAAJFQdUMFllGc2E4Y2tEUjR5VkpKbkNtdDFMNFEAAAACJj74YhZmSWhNM2tVbFRiaU9VcVpDUWpKSGlnAAAAAieXW_YWcXluTUV6RzhUdHlTQTh5TnFwRm1nUQAAAAInl1v0FnF5bk1Fekc4VHR5U0E4eU5xcEZtZ1EAAAACJ5db9RZxeW5NRXpHOFR0eVNBOHlOcXBGbWdRAAAAAkVB1Q0WWUZzYThja0RSNHlWSkpuQ210MUw0UQAAAAImPvhfFmZJaE0za1VsVGJpT1VxWkNRakpIaWcAAAACJ-MhChZOMmYzWVVMbFIzNkdnN1FwVXVHaEd3AAAAAkVB1REWWUZzYThja0RSNHlWSkpuQ210MUw0UQAAAAImPvhgFmZJaE0za1VsVGJpT1VxWkNRakpIaWcAAAACTECoShZsNnNYcFRZNVF6aWw4WXFtc2tmc3ZRAAAAAiY--GEWZkloTTNrVWxUYmlPVXFaQ1FqSkhpZwAAAAJFQdUOFllGc2E4Y2tEUjR5VkpKbkNtdDFMNFEAAAACRUHVEBZZRnNhOGNrRFI0eVZKSm5DbXQxTDRRAAAAAiY--GQWZkloTTNrVWxUYmlPVXFaQ1FqSkhpZwAAAAJFQdUPFllGc2E4Y2tEUjR5VkpKbkNtdDFMNFEAAAACJj74ZRZmSWhNM2tVbFRiaU9VcVpDUWpKSGlnAAAAAkxAqEkWbDZzWHBUWTVRemlsOFlxbXNrZnN2UQAAAAInl1v3FnF5bk1Fekc4VHR5U0E4eU5xcEZtZ1EAAAACTECoRhZsNnNYcFRZNVF6aWw4WXFtc2tmc3ZR"
}
d286e4ae-65b4-11ed-8abf-dac502259ad0.png

3.3 实现示例

d2a34900-65b4-11ed-8abf-dac502259ad0.png

protected  Page searchPageByConditionWithScrollId(BoolQueryBuilder queryParam, Class targetClass, Page page) throws IllegalAccessException, InstantiationException, InvocationTargetException {
        SearchResponse scrollResp = null;
        String scrollId = ContextParameterHolder.get("scrollId");
        if (scrollId != null) {
            scrollResp = getTransportClient().prepareSearchScroll(scrollId).setScroll(new TimeValue(60000)).execute()
                    .actionGet();
        } else {
            logger.info("基于scroll的分页查询,scrollId为空");
            scrollResp = this.prepareSearch()
                    .setSearchType(SearchType.QUERY_AND_FETCH)
                    .setScroll(new TimeValue(60000))
                    .setQuery(queryParam)
                    .setSize(page.getPageSize()).execute().actionGet();
            ContextParameterHolder.set("scrollId", scrollResp.getScrollId());
        }
        SearchHit[] hits = scrollResp.getHits().getHits();
        List list = new ArrayList(hits.length);
        for (SearchHit hit : hits) {
            T instance = targetClass.newInstance();
            this.convertToBean(instance, hit);
            list.add(instance);
        }
        page.setTotalRow((int) scrollResp.getHits().getTotalHits());
        page.setResult(list);
        return page;
    }

3.4 小结

scroll 分页方式的优点就是减少了查询和排序的次数,避免性能损耗。缺点就是只能实现上一页、下一页的翻页功能,不兼容通过页码查询数据的跳页,同时由于其在搜索初始化阶段会生成快照,后续数据的变化无法及时体现在查询结果,因此更加适合一次性批量查询或非实时数据的分页查询。 启用游标查询时,需要注意设定期望的过期时间(scroll = 1m),以降低维持游标查询窗口所需消耗的资源。注意这个过期时间每次查询都会重置刷新为 1 分钟,表示游标的闲置失效时间(第二次以后的查询必须带 scroll = 1m 参数才能实现)

4 Search After 分页方式

Search After 分页方式是 ES 5 新增的一种分页查询方式,其实现的思路同 Scroll 分页方式基本一致,通过记录上一次分页的位置标识,来进行下一次分页数据的查询。相比于 Scroll 分页方式,它的优点是可以实时体现数据的变化,解决了查询快照导致的查询结果延迟问题。

4.1 执行过程

Search After 方式也不支持跳页功能,每次查询一页数据。第一次每个 shard 返回一页数据(size 条),coordinating node 一共获取到 shard 数 * size 条数据 , 接下来 coordinating node 在内存中进行排序,取出前 size 条数据作为第一页搜索结果返回。当拉取第二页时,不同于 Scroll 分页方式,Search After 方式会找到第一页数据被拉取的最大值,作为第二页数据拉取的查询条件。 这样每个 shard 还是返回一页数据(size 条),coordinating node 获取到 shard 数 * size 条数据进行内存排序,取得前 size 条数据作为全局的第二页搜索结果。
后续分页查询以此类推…

4.2 ES 示例

第一次查询只传入排序字段和每页大小 size

GET /wms_order_sku2021_10/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "shipmentOrderCreateTime": {
              "gte": "2021-10-12 0000",
              "lt": "2021-10-15 0000"
            }
          }
        }
      ]
    }
  },
  "size": 20,
  "sort": [
    {
      "_id": {
        "order": "desc"
      }
    },{
      "shipmentOrderCreateTime":{
        "order": "desc"
      }
    }
  ]
}
d2dc8706-65b4-11ed-8abf-dac502259ad0.png

接下来每次查询时都带上本次查询的最后一条数据的 _id 和 shipmentOrderCreateTime 字段,循环往复就能够实现不断下一页的功能
GET /wms_order_sku2021_10/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "shipmentOrderCreateTime": {
              "gte": "2021-10-12 0000",
              "lt": "2021-10-15 0000"
            }
          }
        }
      ]
    }
  },
  "size": 20,
  "sort": [
    {
      "_id": {
        "order": "desc"
      }
    },{
      "shipmentOrderCreateTime":{
        "order": "desc"
      }
    }
  ],
  "search_after": ["SO-460_152-1447931043809128448-100017918838",1634077436000]
}
d2f15096-65b4-11ed-8abf-dac502259ad0.png

4.3 实现示例

d31396c4-65b4-11ed-8abf-dac502259ad0.png
d33703ca-65b4-11ed-8abf-dac502259ad0.png

public  ScrollDto queryScrollDtoByParamWithSearchAfter(
            BoolQueryBuilder queryParam, Class targetClass, int pageSize, String afterId,
            List fieldSortBuilders) {
        SearchResponse scrollResp;
        long now = System.currentTimeMillis();
        SearchRequestBuilder builder = this.prepareSearch();
        if (CollectionUtils.isNotEmpty(fieldSortBuilders)) {
            fieldSortBuilders.forEach(builder::addSort);
        }
        builder.addSort("_id", SortOrder.DESC);
        if (StringUtils.isBlank(afterId)) {
            log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,afterId为空");
            SearchRequestBuilder searchRequestBuilder = builder.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
                    .setQuery(queryParam).setSize(pageSize);
            scrollResp = searchRequestBuilder.execute()
                    .actionGet();
            log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,afterId 为空,searchRequestBuilder:{}", searchRequestBuilder);
        } else {
            log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,afterId=" + afterId);
            Object[] afterIds = JSON.parseObject(afterId, Object[].class);
            SearchRequestBuilder searchRequestBuilder = builder.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
                    .setQuery(queryParam).searchAfter(afterIds).setSize(pageSize);
            log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,searchRequestBuilder:{}", searchRequestBuilder);
            scrollResp = searchRequestBuilder.execute()
                    .actionGet();
        }
        SearchHit[] hits = scrollResp.getHits().getHits();
        log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,totalRow={}, size={}, use time:{}", scrollResp.getHits().getTotalHits(), hits.length, System.currentTimeMillis() - now);
        now = System.currentTimeMillis();

        List list = new ArrayList<>();
        if (ArrayUtils.getLength(hits) > 0) {
            list = Arrays.stream(hits)
                    .filter(Objects::nonNull)
                    .map(SearchHit::getSourceAsMap)
                    .filter(Objects::nonNull)
                    .map(JSON::toJSONString)
                    .map(e -> JSON.parseObject(e, targetClass))
                    .collect(Collectors.toList());
            afterId = JSON.toJSONString(hits[hits.length - 1].getSortValues());
        }
        log.info("es数据转换bean,totalRow={}, size={}, use time:{}", scrollResp.getHits().getTotalHits(), hits.length, System.currentTimeMillis() - now);
        return ScrollDto.builder().scrollId(afterId).result(list).totalRow((int) scrollResp.getHits().getTotalHits()).build();
    }

4.4 小结

Search After 分页方式采用记录作为游标,因此 Search After 要求 doc 中至少有一条全局唯一变量(示例中使用_id 和时间戳,实际上_id 已经是全局唯一)。Search After 方式是无状态的分页查询,因此数据的变更能够及时的反映在查询结果中,避免了 Scroll 分页方式无法获取最新数据变更的缺点。同时 Search After 不用维护 scroll_id 和快照,因此也节约大量资源。

5 总结思考

5.1 ES 三种分页方式对比总结

d35670c0-65b4-11ed-8abf-dac502259ad0.png

如果数据量小(from+size 在 10000 条内),或者只关注结果集的 TopN 数据,可以使用 from/size 分页,简单粗暴

数据量大,深度翻页,后台批处理任务(数据迁移)之类的任务,使用 scroll 方式

数据量大,深度翻页,用户实时、高并发查询需求,使用 search after 方式

5.2 个人思考

在一般业务查询页面中,大多情况都是 10-20 条数据为一页,10000 条数据也就是 500-1000 页。正常情况下,对于用户来说,有极少需求翻到比较靠后的页码来查看数据,更多的是通过查询条件框定一部分数据查看其详情。因此在业务需求敲定初期,可以同业务人员商定 1w 条数据的限定,超过 1w 条的情况可以借助导出数据到 Excel 表,在 Excel 表中做具体的操作。

如果给导出中心返回大量数据的场景可以使用 Scroll 或 Search After 分页方式,相比之下最好使用 Search After 方式,既可以保证数据的实时性,也具有很高的搜索性能。

总之,在使用 ES 时一定要避免深度分页问题,要在跳页功能实现和 ES 性能、资源之间做一个取舍。必要时也可以调大 max_result_window 参数,原则上不建议这么做,因为 1w 条以内 ES 基本能保持很不错的性能,超过这个范围深度分页相当耗时、耗资源,因此谨慎选择此方式。

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Query
    +关注

    关注

    0

    文章

    11

    浏览量

    9346
  • Elasticsearch
    +关注

    关注

    0

    文章

    27

    浏览量

    2824

原文标题:ElasticSearch深度分页详解

文章出处:【微信号:OSC开源社区,微信公众号:OSC开源社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Windows安装ElasticSearch

    Windows安装ElasticSearch
    的头像 发表于 02-15 17:09 975次阅读
    Windows安装<b class='flag-5'>ElasticSearch</b>

    linux安装配置ElasticSearch之源码安装

    ElasticSearch是基于Lucene这个非常成熟的索引方案,另加上一些分布式的实现:集群,sharding,replication等。以下是对其采用源码安装的方法1.下载
    发表于 01-11 17:27

    ElasticSearch的词条查询

    ElasticSearch查询 第三篇:词条查询
    发表于 04-30 17:03

    ElasticSearch的初步环境

    ElasticSearch最实用入门指南——初步环境
    发表于 03-31 11:32

    elasticsearch介绍PPT

    elasticsearch介绍PPT
    发表于 12-13 21:05 20次下载

    Jquery简单分页实现

    这篇文章主要介绍了Jquery简单分页实现方法,实例分析了jquery分页的相关实现技巧,具有一定参考借鉴价值,需要的朋友可以参考下。
    发表于 11-28 11:55 1078次阅读

    一文详解linux的分页模型

    也就是我们实际中编码时遇到的内存地址并不是对应于实际内存上的地址,我们编码中使用的地址是一个逻辑地址,会通过分段和分页这两个机制把它转为物理地址。而由于linux使用的分段机制有限,可以认为
    的头像 发表于 05-18 08:59 2116次阅读
    一文<b class='flag-5'>详解</b>linux的<b class='flag-5'>分页</b>模型

    Elasticsearch6.1教程

    Elasticsearch6.1教程
    发表于 07-04 14:40 0次下载

    ElasticSearch是什么?应用场景是什么?

    ElasticSearch是什么 ElasticSearch的功能 ElasticSearch的应用场景 ElasticSearch的特点
    的头像 发表于 10-09 18:38 2446次阅读

    ElasticSearch 深度分页实践性分析探讨

    该条 DSL 语句表示从搜索结果中第 10 条数据位置开始,取之后的 20 条数据作为结果返回。这种分页方式在 ES 集群内部是如何执行的呢?
    发表于 11-21 11:21 398次阅读

    图文详解Linux分页机制

    分页机制是 80x86 内存管理机制的第二种机制,分段机制用于把虚拟地址转换为线性地址,而分页机制用于把线性地址转换为物理地址。
    发表于 05-30 09:10 449次阅读
    图文<b class='flag-5'>详解</b>Linux<b class='flag-5'>分页</b>机制

    聊聊分页列表缓存设计

    这是最简单易懂的方案,我们按照不同的分页条件查询出结果后,直接缓存分页结果 。
    的头像 发表于 06-06 18:25 717次阅读
    聊聊<b class='flag-5'>分页</b>列表缓存设计

    Elasticsearch保姆级入门

    我们需要创建一个供 Elasticsearch 和 Kibana 使用的 network。这个 network 将被用于 Elasticsearch 和 Kibana 之间的通信。
    的头像 发表于 09-01 15:24 832次阅读
    <b class='flag-5'>Elasticsearch</b>保姆级入门

    SpringBoot 连接ElasticSearch的使用方式

    在上篇 ElasticSearch 文章中,我们详细的介绍了 ElasticSearch 的各种 api 使用。 实际的项目开发过程中,我们通常基于某些主流框架平台进行技术开发,比如
    的头像 发表于 10-09 10:35 1080次阅读

    mybatis逻辑分页和物理分页的区别

    MyBatis是一个开源的Java持久层框架,它与其他ORM(对象关系映射)框架相比,具有更加灵活和高性能的特点。MyBatis提供了两种分页方式,即逻辑分页和物理分页。在本文中,我们将详细介绍
    的头像 发表于 12-03 14:54 894次阅读