0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器视觉是什么?有哪些技术应用?

QQ475400555 来源:雨飞工作室 作者:雨飞工作室 2022-11-17 10:07 次阅读

提及机器人视觉,不免会想到计算机视觉机器视觉,很多人会把这三者弄混。

计算机视觉是以图片认知为基础的科学,只通过图片识别输出结果,代表企业是谷歌。

机器视觉多用于生产线上的质量检测,普遍基于2D识别,被广泛应用于3C电子行业,代表企业是康耐视。

机器人视觉是指不仅要把视觉信息作为输入,而且还要对这些信息进行处理,进而提取出有用的信息提供给机器人。是为了让机器人真正变成“机器人”,而不是机器臂。

(一)

传统的机器臂只是自动化设备,是通过编程处理固定的动作,是不能处理具有变动性事物的能力。机器人视觉这要求机器人要拥有3D视觉,能处理三维空间里的三维物体问题,并且具有复杂算法,支撑机器人对位置、动作、轨迹等复杂信息的捕捉,这必须要依赖人工智能深度学习来完成。

机器人视觉是为认知机器人服务,具备不断学习的功能尤为关键,无论是做检测还是定位引导,当机器人做的次数越多,伴随着数据的增长变化,机器人的准确性也会越高,这跟人的学习成长能力是类似的。

机器人视觉是一种处理问题的研究手段。经过长时间的发展,机器人视觉在定位,识别,检测等多个方面发展出来各种方法。其以常见的相机作为工具,以图像作为处理媒介,获取环境信息。

1、相机模型

相机是机器人视觉的主要武器,也是机器人视觉和环境进行通信的媒介。相机的数学模型为小孔模型,其核心在于相似三角形的求解。其中有三个值得关注的地方: 1.11/f = 1/a + 1/b

焦距等于物距加上像距。此为成像定理,满足此条件时才能成清晰的像。 1.2X = x * f/Z

如果连续改变焦距f ,并同时移动相机改变Z,则可以使得物体x在图像上所占像素数目不变(X)。此为DollyZoom原理。如果某个物体在该物体后方(更大的Z),可利用此原理任意调整两个物体在相片上的比例。 1.3

焦距越长,则视场越小,可以将远处的物体拍清晰。同时相片会有更大的景深。

2、消失点

消失点是相片中特有的。此点在相片中不直接存在,在现实中直接不存在。由于射影变换,相片中原本平行的线会有相交的趋势。如果求的平行直线在图像中的交点,则该点对应现实中无穷远处的一点。该点的图像坐标为[X1 X1 1]。此点成为消失点。相机光心与消失点的连线指向消失点在摄像机坐标系中的方向。

此外,同一平面上各个方向的消失点,会在图像中组成一条直线,称为水平线。该原理可以用于测量站在地上的人的高度。值得注意的是只有相机水平时,horizen的高度才是camera Height.

2.1 位姿估计

如果我们能获得一幅图中的2个消失点。且这2个消失点所对应的方向是相互垂直的(网格),那么我们就可以估计出相机相对于此图像的姿态(靶标位姿估计)。 在获得相机相对于靶标的旋转向量后,如果相机内部参数已知,且已知射影变换矩阵,则可计算相机相对于靶标的距离,那么可以估计机器人的位置。H = K^-1*(H射影矩阵)

2.2 点线对偶

p1×p2 = L12 L12×L23 = p2

3、射影变换

射影变化是空间中平面---》平面的一种变换。对齐次坐标,任意可逆矩阵H均表达了射影变换。简而言之,可以表达为A = HB ,其中AB是[X Y 1]形式的其次坐标。射影变换的一大作用就是将某一形状投射成其他形状。比如,制作相片中的广告牌,或者比赛转播中的广告牌,或者游泳比赛运动员到达后那个biu的一下出现的国旗。射影变换也是增强现实技术的基础。

射影变换的核心在于H的求取。普通的求解方法见机器视觉教材。

假设平面相片的四个点分别是A(0,0,1),B(0,1,1),C(1,1,1),D(1,0,1)。显然,这四个点需要投射到四个我们已知像素位坐标的图像区域中。

此外,我们还可以依据像素位置计算两个有趣的点,V1(x1, y1, z1),V2(x2,y2,z2),这两个点都是图像点。他们对应的实际坐标假设是(0,1,0),(1,0,0)。那么我们就有三个很有趣的实际点了。分别是(1,0,0),(0,1,0),(0,0,1),恰好是一个Identity Matrix。这三个实际坐标经过射影变换会得到像素坐标。像素坐标又是已知的。那么H的第一列就应该对应beta*V2,第二列应该对应alpha*V1。

第三列应该对应gama*【A的像素坐标】。alpha beta gama是常数。【射影变化后的坐标应为常数乘以其次坐标】。

如果能解得alpha beta gama,那么我们就获得了射影变换矩阵。显然把C点的像素坐标带入方程,我们则有3个方程,4个未知数(引入了一个lamda)。但是lamda并不影响,除过去后我们只要

alpha/lamda,beta/lamda,gama/lamda当作未知数即可解除射影矩阵。

所以,射影变换矩阵的第一列代表消失点V1,第二列代表消失点V2,第一列与第二列的叉乘,代表水平线方程(点线对偶)。

(二)

上回介绍了机器人视觉的一些基础信息,说到机器人视觉的核心任务是estimation,理论框架是射影几何理论。然而,整个estimation的首要条件是已知像素点坐标,尤其是多幅图中对应点的像素坐标。 单幅图像的处理方法不赘述,想讲讲不变点检测与不变特征。由于机器人在不断运动,所以可能从不同方向对同一物体进行拍摄。而拍摄的距离有远近,角度有titled. 由于射影变换本身的性质,无法保证两幅图中的物体看上去一样。所以我们需要一种特征提取方法(特征点检测),能够保证检测是旋转,缩放不变的。除此之外还要一种特征描述方法,同样对旋转和缩放不变。

1、SIFT特征提取

SIFT特征提取可以分为以下几个步骤:(1)多尺度卷积;(2)构造金字塔;(3)3D非极大值抑制。

多尺度卷积的作用是构造一个由近及远的图像。金字塔则由下采样进行构造。

对于不同尺度的图像同一个像素,我们可以跟踪它“灰度”的变化。我们发现,如果某一点对不同 sigma 的模版响应是不同的,最大响应(卷积后的灰度)所对应的scale 成为该点本征scale。这有点像对一个机械结构给不同频率的激励,某一频率下会发生共振,我们可以记录此频率一定程度上代表了此结构(单摆频率只和ml有关,有了f就可以重现系统)。 所以,我们只要找到一个合适的模版(激励方式),再找到最大响应,就可以获取图片中各个点的 Intrinsic Scale(本征尺度)。同一物体在不同距离拍摄后,都会统一在Intrinsic Scale下进行响应。由此解决了尺度不变的问题。 3D非极大值抑制是指在某点的3*3*3邻域内,仅取最大响应,作为特征点。由于该点是空间邻域中响应最强的,所以该点也是旋转不变的。从各个方向看,该点响应最强。

2、SIFT特征描述

特征提取和特征描述实际上是两码事。在上一节中特征提取已经结束了。假如有两幅图片,那么相同的特征点肯定会被找到。特征描述的作用是为匹配做准备,其以特征点局部区域信息为标准,将两幅图中相同的特征点联系起来。特征的本质是一个高维向量。要求尺度不变,旋转不变。

这里所使用的是HOG特征。特征描述可以分为两步:(1)局部主方向确定;(2)计算梯度直方图。 以sigma作为特征描述选择范围是一个合理的想法,因为sigma描述了尺度,特征点位置+尺度 = 特征点所代局部信息。在此基础上,统计其领域内所有像素的梯度方向,以方向统计直方图作为特征向量,至此完成HOG特征构造。重要的是,在统计方向之前,需要把图像主方向和X轴方向对齐。示意图如下:

图中黄色的有点像时钟的东西是特征点+scale,指针代表该片小图像的主方向(PCA)。绿色的是直方图的bin,用于计算特征向量。 最后,我们只要匹配特征向量就可以得到 图像1 --- 图像2 的对应点对,通过单应矩阵的计算就可以将两幅图拼接在一起。如果已知标定信息则可进行3D reconstruction。 (三)上篇文章说到从场景中提取特征点,并且对不同角度中的特征点进行匹配。这次要先介绍一个工具 —— 拟合。 拟合本质上是一个优化问题,对于优化问题,最基本的是线性最小二乘法。换言之,我们需要保证拟合误差最小。

1、最小二乘法拟合

基本的最小二乘法拟合解决的是 点 --- 模型 的拟合问题。以点到直线的拟合为例,按照拟合误差的建模,该问题可以分为两类。

第一类以 因变量 误差作为优化目标,该类问题往往是自变量---因变量模式,xy的单位不同。 第二类以 距离 作为优化目标,该类问题xy的单位往往相同,直线不代表趋势,而是一种几何模型。 由于优化目标不同,故建模方式与解均不同,但是解法思路是一样的,都是讲求和化作向量的模。而向量又是矩阵的运算结果,最终化为奇异值分解问题。

2、RASAC拟合

RanSaC算法(随机采样一致)原本是用于数据处理的一种经典算法,其作用是在大量噪声情况下,提取物体中特定的成分。下图是对RanSaC算法效果的说明。图中有一些点显然是满足某条直线的,另外有一团点是纯噪声。目的是在大量噪声的情况下找到直线方程,此时噪声数据量是直线的3倍。

如果用最小二乘法是无法得到这样的效果的,直线大约会在图中直线偏上一点。关于随机采样一致性算法的原理,在wiki百科上讲的很清楚,甚至给出了伪代码和matlab,C代码,想换一个不那么严肃或者说不那么学术的方式来解释这个算法。 实际上这个算法就是从一堆数据里挑出自己最心仪的数据。所谓心仪当然是有个标准(目标的形式:满足直线方程?满足圆方程?以及能容忍的误差e)。平面中确定一条直线需要2点,确定一个圆则需要3点。随机采样算法,其实就和小女生找男朋友差不多。

从人群中随便找个男生,看看他条件怎么样,然后和他谈恋爱,(平面中随机找两个点,拟合一条直线,并计算在容忍误差e中有多少点满足这条直线)

第二天,再重新找个男生,看看他条件怎么样,和男朋友比比,如果更好就换新的(重新随机选两点,拟合直线,看看这条直线是不是能容忍更多的点,如果是则记此直线为结果)

第三天,重复第二天的行为(循环迭代)

终于到了某个年龄,和现在的男朋友结婚(迭代结束,记录当前结果)

显然,如果一个女生按照上面的方法找男朋友,最后一定会嫁一个好的(我们会得到心仪的分割结果)。只要这个模型在直观上存在,该算法就一定有机会把它找到。优点是噪声可以分布的任意广,噪声可以远大于模型信息。 这个算法有两个缺点,第一,必须先指定一个合适的容忍误差e。第二,必须指定迭代次数作为收敛条件。 综合以上特性,本算法非常适合从杂乱点云中检测某些具有特殊外形的物体。

3、非线性拟合

线性最小二乘法已经有了很好的解释。但是生活总是如此不易,能化成上述标准矩阵形式的问题毕竟还是少数,大部分情况下,我们面对的不是min(||Ax - b||),而是 min(||f(x)-b||) !!!

在三维重建中,如果我们有2个以上视角,那么三条线很可能是不交于一点的。原因是我们选择的旋转矩阵有精度表达问题,位姿估计也存在误差。使用奇异值分解的方法是求得到三条线距离最小的点,还有一种合适的估计,是使得该点在三个相机上的重复投影误差最小。同时,R,T,P(X,Y,Z)进行估计,最终保证Reprojection err 最小的方法————the state of the art BUNDLE ADJUST. 先回到最原始的问题,如何求解非线性最小二乘法。

由线性最小二乘法,我们可以得到非线性最小二乘法矩阵表达形式。如果要求得其局部最小值,则对 x 求导后,导数应为 0。

然而,这个东西并不好解,我们考虑使用梯度下降迭代的方式。这里使用的是单纯的梯度。

这里有个非常不好理解的地方,其假设detaX非常小,故表示成上述形式,以保证 f(x + deta_X)《f(x) , 只要依次迭代 x 就能保证每次都向着f(x)减小的方向移动。实际上,这个解应该由hessian矩阵给出。《 span》

以信标定位为例。讲道理,两个信标为圆心画圆应该给出位置的两个解析解。但是如果有很多信标,那么信标就会画出一块区域。..。..。.这是SLAM里的经典问题了,后面会有博客专门讲BUNDLE ADJUST.

(四)极几何是机器人视觉分支——双目视觉中,最为重要的概念。与结构光视觉不同,双目视觉是“主动测量”方法。

1、极几何的研究前提

极几何的研究对象是两幅有重叠区域图像。研究目标是提取相机拍摄位姿之间的关系。一旦得到两次拍摄位姿之间的关系,我们就可以对场景点进行三维重建。

极几何定义的物理量包括4个:1、极点;2、极线;3、基本矩阵;4、本征矩阵;定义如左图。 极几何研究的物理量包括4个:C1坐标,C2坐标,R,T,定义如右图。

极点的本质是另一台相机光心在本图像上的映射点。极线的本质是另一台相机光线在本图像上的映射线。(极点和极线都是在图像上的)

1.1、本征矩阵

本征矩阵携带了相机相对位置信息。其推导如下: 在相机2的坐标系中,场景点坐标:X2 = RX1+ t 相机1光心坐标:t 极线在空间中的映射 :X2 - t = RX1 此时,三个向量在同一个平面上,则有:X2 T tx RX1 = 0 其中,tx 代表 t 的叉乘矩阵。tx R 称为本征矩阵E. 两幅图片一旦拍摄完成R与T都是确定的。空间中任何一组对应点都必须满足本征矩阵!

1.2、基本矩阵

空间中的点满足E矩阵,则该点坐标Zoom后,仍然必须满足E矩阵。坐标的Zoom显然和相机内部矩阵有关。 在相机坐标系下: x1 = KX1; x2 = KX2 其中,x1 ,x2 是齐次像素坐标。那么,X1 = K-1x1 ;X2 = K-1x2 带入本征矩阵可得: x2 T K-Ttx RK-1 x1 = 0======》 K-TEK-1 = 0 =========》 x2 T F x1 = 0 F = K-TEK-1 称为基本矩阵。 基本矩阵所接受的是齐次像素坐标。 基本矩阵的秩是2,因为它有0空间。同时,其自由度是8,因为它接受的是齐次坐标。每组图像点可以提供1个方程,所以由8组点就可以线性解出F矩阵。当然,解法是化成Ax = 0,然后使用奇异值分解取v的最后一列。然后2次奇异值分解去掉最小奇异值正则化。

1.3、极点与极线

从基本矩阵可知:x2 T F x1 = 0 显然这里有熟悉的身影,由点线对偶可知,x2 在直线 F x1 上。该直线是极线在图像2上的方程。x1 在直线 x2 T F 。该直线是极线在图像1上的方程。 极点是多条极线的交点(最少两条)

2、由本征矩阵恢复R,T

E = tx R = [ tx r1 tx r2 tx r3 ]

E的秩为2,因为其有0空间。同时,由于r1 r2 r3 是正交的,所以其叉乘之后必然也是正交的。所以不妨假设其叉乘完之后依然满足旋转矩阵的某些性质。比如:每一列,模相等。 由 tT E = 0 可知,对E奇异值分解之后,t 为最小奇异值所对应的 u(:,end)。 如下:

这里假设了 R = UYVT 。因为U,V和R是同族的。所以必然由矩阵Y使得上式成立。V是相互垂直的,R的作用是旋转,U则必然是相互垂直的。所以这里R一定有解,不妨设一个中间变量Y。并很容易解得:

综合来看,由4组可能的解,对应以下四种情况,其中只有第一种是可能的。故det(R) = 1 则猜z中了正确的解,如果det(R) = -1 则解为:t = -t ;R = -R

3、由空间位置关系恢复三维坐标

在已知标定信息,两相机位置关系的情况下,就已知了两个相机的投影矩阵P,对于空间中一点X1,有以下关系: x1= P*X1 [x1]x P X1 = 0; 显然,我们又有了Ax = 0的神奇形式。奇异值分解搞定之。

4、由RANSAC求 F 矩阵

有了8个对应点,我们就可以求得F矩阵,再加上K,我们就可以对两幅图片进行三维重建。然而想要自动的求取8个对应点还是有一定难度。 SIFT算法提供了一种自动匹配的可能性,然而,匹配结果还有很多误匹配的点。本节的目标是利用RANSAC作为算法基础,基础矩阵作为方法,来对匹配结果进行判断。 首先,由于检测误差等因素,像素点不可能恰好满足基本方程。所以点到极线会有一定的距离。我们采用垂直距离来建模,有以下表达式:

F1表示F的第一列。只要误差小于阈值,都认为该点符合 F 方程。 算法流程如下:1、随机取8个点;2、估计F;3、计算所有点的e,并求#inlier;4、回到1,2,3,如果#inlier变多则更新F_candidate;5、迭代很多次结束,F_candidate 为F的估计值。 RANSAC算法又一次证明了其对噪声超级好的控制能力。

(五)之前说到,机器人视觉的核心是Estimation,求取特征并配准,也是为了Estimation做准备。一旦配准完成,我们就可以从图像中估计机器人的位置,姿态。有了位置,姿态,我们可以把三维重建的东西进行拼接。 从视觉信息估计机器人位姿的问题可以分为三个大类:1、场景点在同一平面上。2、场景点在三维空间中。3、两幅点云的配准。 所有问题有一个大前提就是知道相机内部矩阵K。

1、由单应矩阵进行位姿估计

单应矩阵原指从 R2--R2 的映射关系。

但在估计问题中,如果我们能获得这种映射关系,就可以恢复从世界坐标系 x_w 到相机坐标系 x_c 的变换矩阵。此变换矩阵表达了相机相对于x_w 的位姿。 H = s*K*[r1 r2 t] —— 假设平面上z坐标为0 s*[r1 r2 t] = k-1*H —— 利用单应矩阵求取旋转与平移向量 r3 = r1×r2 —— 恢复r3 s 并不重要,只需要对k-1*h1 进行归一化就能求出来。 所以,最重要的就是如何求取两个场景中的单应。在前面我提过从消失点来求取单应关系,但是如果不是从长方形 --- 四边形的映射,我们并没有消失点可以找。 这里要介绍的是一种优雅到爆棚的方法。基于矩阵变换与奇异值分解。JB SHI真不愧大牛。三两句就把这个问题讲的如此简单。

由于H矩阵一共有8个自由度,每一对单应点可以提供两个方程,所以4个单应点就可以唯一确定单应矩阵H。Ax = 0,我们在拟合一章中已经了解过了。x 是最小奇异值对于的V矩阵的列。这里是奇异值分解的第一次出现。 至此,我们恢复了H矩阵。按照正常的思路就可以解除[r1 r2 t]了。但是,我们的H矩阵是用奇异值分解优化出来的,反解的r1 r2 并不一定满足正交条件,也不一定满足等长条件。所以,我们还要拟合一次RT矩阵。 此次的拟合目标是 min(ROS3 - R‘)。 其中R’ = [k-1H(:,1:2) x ]。 方法依旧是奇异值分解,R = UV‘。 这是奇异值分解的第二次出现。

2、由射影变换进行位姿估计

由单应矩阵进行位姿估计的前提是所有点都在一个平面上。而由射影变换进行位姿估计则舍弃了此前提,故上一节是本节的一个特例。此问题学名为PnP问题:perspective-n-point。

仿造上面的思路,我们依旧可以写成以下形式:

此处射影矩阵一共有12个未知数,9来自旋转矩阵,3来自平移向量。每个点可以提供2个方程。故只要6个场景点,我们就可以用奇异值分解获得P矩阵的值。同样,在获得P矩阵后求T = k-1*P,最后利用奇异值分解修正T. 不过按照常理,此问题只有6个自由度(3平移,3旋转)。我们使用6个点其实是一种dirty method。

3、由两幅点云进行位姿估计

对于现在很火的RGBD相机而言,可能这种情况会比较多。从不同角度获得了同一物体的三维图像,如何求取两个位姿之间的变换关系。这个问题有解析解的前提是点能够一一对应上。如果点不能一一对应,那就是ICP算法问题了。

此问题学名为:Procrustes Problem。来自希腊神话。用中文来比喻的话可以叫穿鞋问题。如何对脚进行旋转平移,最后塞进鞋里。其数学描述如下:通过选择合适的R,T,减小AB之间的差别。

T 其实很好猜,如果两个点团能重合,那么其重心肯定是重合的。所以T代表两个点团重心之间的向量。此问题则有如下变形:

由矩阵分析可知,向量的2范数有以下变形:

由矩阵分析可知,最后两项实际上是相等的(迹的循环不变性与转置不变性) 那么优化目标又可以转为:

迹是和奇异值相关的量(相似变换迹不变)

显然,如果Z的迹尽可能大,那么只有一种情况,Z是单位阵,单位阵的迹是旋转矩阵里最大的。所以R的解析解如下:

至此,我们获得了3D--3D位姿估计的解析解! (六)最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法。

1、基于非线性优化的相机位姿估计

之前已经在拟合一篇中,已经补完了非线性最小二乘拟合问题。Bundle Adjustment,中文是光束平差法,就是利用非线性最小二乘法来求取相机位姿,三维点坐标。在仅给定相机内部矩阵的条件下,对四周物体进行高精度重建。Bundle Adjustment的优化目标依旧是最小重复投影误差。

与利用non-linear mean square 解三角同,bundle adjustment 中所有的参数,RCX均为变量。N幅图则有N个位姿,X个点,我们会得到非常大的jacobbian Matrix.本质上,需要使用雅克比矩阵进行梯度下降搜索。详细见之前介绍过的“拟合”篇。

2、雅克比矩阵

雅克比矩阵的行代表信息,列代表约束。 每一行是一个点在该位姿下的误差,每一列代表f对x分量的偏导数。

q x c 均为变量,q是旋转四元素,x 是三维点空间坐标,c 是相机光心在世界坐标系下的坐标。J 可以分为三部分,前4列代表对旋转求导,中间三列代表对c求导,最后三列代表对x求导。其中,对旋转求导又可以分解为对旋转矩阵求导X旋转矩阵对四元素q求导。一旦获得J的表达式,我们就可以使用Newton-Gaussian 迭代对x寻优了。求导后的数学表达式如下:

如果有两个相机,则总的雅克比矩阵如下:

通过同时迭代所有的q C X ,最终可以同时得到世界点坐标,相机位姿 ——SLAM!

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 计算机
    +关注

    关注

    19

    文章

    7511

    浏览量

    88078
  • 机器视觉
    +关注

    关注

    162

    文章

    4379

    浏览量

    120397

原文标题:详解:机器视觉是什么?

文章出处:【微信号:机器视觉沙龙,微信公众号:机器视觉沙龙】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    视觉检测是什么意思?机器视觉检测的适用行业及场景哪些?

    在快速迭代的工业世界中,机器视觉检测以其精准、高效的力量,已成为众多产业不可或缺的技术支持。本文将深入探讨机器视觉检测的含义、应用行业及具体
    的头像 发表于 08-30 11:20 388次阅读

    焊接机器视觉控制技术哪些组成

    焊接机器人在现代制造业中扮演着重要角色,它们提高了焊接的自动化程度和生产效率。然而,如何精确地控制焊接过程,以确保焊接质量,是一个重要的难题。随着技术的发展,视觉控制技术在焊接
    的头像 发表于 08-15 16:23 285次阅读

    什么是机器视觉opencv?它有哪些优势?

    机器视觉(Machine Vision)是一种利用计算机和图像处理技术来模拟人类视觉系统的功能,实现对图像的识别、分析和理解的技术。Open
    的头像 发表于 07-16 10:33 804次阅读

    机器视觉和计算机视觉什么区别

    机器视觉和计算机视觉是两个密切相关但又有所区别的概念。 一、定义 机器视觉 机器
    的头像 发表于 07-16 10:23 555次阅读

    机器视觉的应用实例解析

    机器视觉是一种利用计算机视觉技术对图像进行处理、分析和理解的技术。它在许多领域都有广泛的应用,包括工业自动化、医疗诊断、交通监控、安全监控等
    的头像 发表于 07-16 10:19 475次阅读

    机器视觉控制轴运动原理是什么?

          过去几年里,运动控制系统已经把机器视觉作为其关键部分。越来越多的工程师和科研人员认识到当前的机器视觉技术和运动控制
    的头像 发表于 07-09 08:45 303次阅读

    机器视觉光源的选择和应用哪些

    机器视觉光源是机器视觉系统中的重要组成部分,它对图像的质量和机器视觉系统的性能有着至关重要的影响
    的头像 发表于 07-04 11:36 917次阅读

    机器视觉技术中图像分割方法哪些

    机器视觉技术是人工智能领域的一个重要分支,它涉及到图像处理、模式识别、机器学习等多个学科。图像分割是机器
    的头像 发表于 07-04 11:34 1035次阅读

    机器视觉的硬件组成哪些

    机器视觉是一种利用计算机和图像处理技术来模拟人类视觉系统的技术。它涉及到图像的获取、处理、分析和理解,广泛应用于工业自动化、医疗诊断、智能交
    的头像 发表于 07-04 10:51 1625次阅读

    机器视觉控制的优缺点哪些

    机器视觉控制是一种利用计算机视觉技术机器进行控制的方法,它在工业自动化、机器
    的头像 发表于 07-04 10:43 750次阅读

    机器视觉光源哪几种

    机器视觉光源是机器视觉系统中的重要组成部分,它直接影响到图像的质量和识别效果。本文将详细介绍机器视觉
    的头像 发表于 07-04 10:03 894次阅读

    机器视觉哪些优缺点

    随着科技的不断进步和人工智能的飞速发展,机器视觉技术已成为工业自动化、智能制造、质量控制等领域不可或缺的一部分。机器视觉是指通过光学设备和非
    的头像 发表于 06-06 17:27 962次阅读

    机器视觉的关键技术哪些

    机器视觉作为人工智能领域的一个重要分支,通过模拟和模仿人类视觉系统,使计算机能够感知、理解和解释图像和视频数据。随着计算能力的提升和算法的进步,机器
    的头像 发表于 06-06 15:57 809次阅读

    机器视觉中常用的光源 影响机器视觉技术速度的因素

    机器视觉的光源种类繁多,常见的白光光源、红外光源、紫外光源、激光光源、红绿蓝(RGB)光源等。其中,白光光源是最常见的机器视觉光源之一,它
    的头像 发表于 02-27 18:18 1917次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>视觉</b>中常用的光源 影响<b class='flag-5'>机器</b><b class='flag-5'>视觉</b><b class='flag-5'>技术</b>速度的因素

    机器视觉软件哪些 机器视觉软件的优点

    机器视觉软件是一种利用计算机视觉技术来模拟和弥补人眼视觉功能的软件系统。它可以通过对图像和视频进行分析,识别和理解目标物体,以实现自动化和智
    的头像 发表于 02-02 10:53 1618次阅读