0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

功能强大的开源Python绘图库

数据分析与开发 来源:数据分析1480 作者:数据分析1480 2022-11-17 15:05 次阅读

今天给大家分享一篇可视化干货,介绍的是功能强大的开源Python 绘图库Plotly,教你如何用超简单的(甚至只要一行!)代码,绘制出更棒的图表。

我之前一直守着 matplotlib 用的原因,就是为了我学会它复杂的语法,已经“沉没"在里面的几百个小时的时间成本。这也导致我花费了不知多少个深夜,在 StackOverflow 上搜索如何“格式化日期”或“增加第二个Y轴”。

但我们现在有一个更好的选择了 —— 比如易于使用、文档健全、功能强大的开源 Python 绘图库Plotly。今天就带你深入体验下,了解它如何用超简单的(甚至只要一行!)代码,绘制出更棒的图表。

本文中所有代码都已经在 Github 上开源,所有的图表都是可交互的,请使用Jupyter notebook查看 。 (Github 源代码地址:https://github.com/WillKoehrsen/Data-Analysis/blob/master/plotly/Plotly%20Whirlwind%20Introduction.ipynb)

e4e1a25e-662e-11ed-8abf-dac502259ad0.png

(plotly 绘制的范例图表。图片来源:plot.ly)

Plotly 概述

plotly 的 Python 软件包是一个开源的代码库,它基于 plot.js,而后者基于 d3.js。我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,它能让你更方便地使用 plotly 和 Pandas 数据表协同工作。 *注:Plotly 本身是一个拥有多个不同产品和开源工具集的可视化技术公司。Plotly 的 Python 库是可以免费使用的,在离线模式可以创建数量不限的图表,在线模式因为用到了 Plotly 的共享服务,只能生成并分享 25 张图表。 本文中的所有可视化图表都是在 Jupyter Notebook 中使用离线模式的 plotly + cufflinks 库完成的。在使用pip install cufflinks plotly完成安装后,你可以用下面这样的代码在 Jupyter 里完成导入:

e4f63cd2-662e-11ed-8abf-dac502259ad0.png

单变量分布:柱状图和箱形图

单变量分析图往往是开始数据分析时的标准做法,而柱状图基本上算是单变量分布分析时必备的图表之一(虽然它还有一些不足)。 就拿博客文章点赞总数为例(原始数据见 Github:https://github.com/WillKoehrsen/Data-Analysis/tree/master/medium ),做一个简单的交互式柱状图:

e534925c-662e-11ed-8abf-dac502259ad0.png

(代码中的df是标准的 Pandas dataframe 对象)

e54b3110-662e-11ed-8abf-dac502259ad0.gif

(使用 plotly+cufflinks 创建的交互式柱状图)

对于已经习惯matplotlib的同学,你们只需要多打一个字母(把.plot改成.iplot),就能获得看起来更加美观的交互式图表!点击图片上的元素就能显示出详细信息、随意缩放,还带有(我们接下来会提到的)高亮筛选某些部分等超棒功能。 如果你想绘制堆叠柱状图,也只需要这样:

ea031e48-662e-11ed-8abf-dac502259ad0.png

ea155ec8-662e-11ed-8abf-dac502259ad0.png

对pandas数据表进行简单的处理,并生成条形图:

ea28c13e-662e-11ed-8abf-dac502259ad0.png

ea3990e0-662e-11ed-8abf-dac502259ad0.png

就像上面展示的那样,我们可以将 plotly + cufflinks 和 pandas 的能力整合在一起。比如,我们可以先用.pivot()进行数据透视表分析,然后再生成条形图。 比如统计不同发表渠道中,每篇文章带来的新增粉丝数:

ea60c516-662e-11ed-8abf-dac502259ad0.png

ea8523ac-662e-11ed-8abf-dac502259ad0.gif

交互式图表带来的好处是,我们可以随意探索数据、拆分子项进行分析。箱型图能提供大量的信息,但如果你看不到具体数值,你很可能会错过其中的一大部分!

散点图

散点图是大多数分析的核心内容,它能让我们看出一个变量随着时间推移的变化情况,或是两个(或多个)变量之间的关系变化情况。

时间序列分析

在现实世界中,相当部分的数据都带有时间元素。幸运的是,plotly + cufflinks 天生就带有支持时间序列可视化分析的功能。 以我在“Towards Data Science”网站上发表的文章数据为例,让我们以发布时间为索引构建一个数据集,看看文章热度的变化情况:

eabe9a74-662e-11ed-8abf-dac502259ad0.png

eacd407e-662e-11ed-8abf-dac502259ad0.gif

在上图中,我们用一行代码完成了几件事情:

自动生成美观的时间序列 X 轴

增加第二条 Y 轴,因为两个变量的范围并不一致

把文章标题放在鼠标悬停时显示的标签

为了显示更多数据,我们可以方便地添加文本注释:

ef3a8c84-662e-11ed-8abf-dac502259ad0.png

ef4aad58-662e-11ed-8abf-dac502259ad0.png

(带有文本注释的散点图)

下面的代码中,我们将一个双变量散点图按第三个分类变量进行着色:

efb47fbc-662e-11ed-8abf-dac502259ad0.png

efc71e1a-662e-11ed-8abf-dac502259ad0.png

接下来我们要玩点复杂的:对数坐标轴。我们通过指定 plotly 的布局(layout)参数来实现这一点(关于不同的布局,请参考官方文档 https://plot.ly/python/reference/),同时我们把点的尺寸(size参数)和一个数值变量read_ratio(阅读比例)绑定,数字越大,泡泡的尺寸也越大。

efe96f9c-662e-11ed-8abf-dac502259ad0.png

f00e17e8-662e-11ed-8abf-dac502259ad0.png

如果想要更复杂一些(详见 Github 的源代码),我们甚至可以在一张图里塞进 4 个变量!(然而并不推荐你们真的这么搞)

f026f560-662e-11ed-8abf-dac502259ad0.png

和前面一样,我们可以将 pandas 和 plotly+cufflinks 结合起来,实现许多有用的图表:

f039c294-662e-11ed-8abf-dac502259ad0.png

f056fd46-662e-11ed-8abf-dac502259ad0.png

建议你查看官方文档,或者源代码,里面有更多的范例和函数实例。只需要简单的一两行代码,就可以为你的图表加上文字注释,辅助线,最佳拟合线等有用的元素,并且保持原有的各种交互式功能。

高级绘图功能

接下来,我们要详细介绍几种特殊的图表,平时你可能并不会很经常用到它们,但我保证只要你用好了它们,一定能让人刮目相看。我们要用到 plotly 的figure_factory模块,只需要一行代码,就能生成超棒的图表!

散点图矩阵

假如我们要探索许多不同变量之间的关系,散点图矩阵(也被称为SPLOM)就是个很棒的选择:

f06e8b0a-662e-11ed-8abf-dac502259ad0.png

f07dfd42-662e-11ed-8abf-dac502259ad0.jpg

即使是这样复杂的图形,也是完全可交互的,让我们能更详尽地对数据进行探索。

关系热图

为了体现多个数值变量间的关系,我们可以计算它们的相关性,然后用带标注热度图的形式进行可视化:

f0a35524-662e-11ed-8abf-dac502259ad0.png

f0c172de-662e-11ed-8abf-dac502259ad0.jpg

自定义主题

除了层出不穷的各种图表外,Cufflinks 还提供了许多不同的着色主题,方便你轻松切换各种不同的图表风格。下面两张图分别是“太空”主题和“ggplot”主题:

f0f49e48-662e-11ed-8abf-dac502259ad0.png

f105a40e-662e-11ed-8abf-dac502259ad0.png

此外,还有 3D 图表(曲面和泡泡):

f12e479c-662e-11ed-8abf-dac502259ad0.png

f15b53d6-662e-11ed-8abf-dac502259ad0.png

对有兴趣研究的用户来说,做张饼图也不是什么难事:

f1dd609c-662e-11ed-8abf-dac502259ad0.png

在 Plotly 图表工坊(Plotly Chart Studio)里编辑

当你在 Jupyter Notebook 里生成了这些图表之后,你将会发现图表的右下角出现了一个小小的链接,写着“Export to plot.ly(发布到 plot.ly)”。如果你点击这个链接,你将会跳转到一个“图表工坊”(https://plot.ly/create/)。 在这里,你可以在最终展示之前进一步修改和润色你的图表。可以添加标注,选择某些元素的颜色,把一切都整理清楚,生成一个超棒的图表。之后,你还可以将它发布到网络上,生成一个供其他人查阅的链接。 下面两张图是在图表工坊里制作的:

f1fc216c-662e-11ed-8abf-dac502259ad0.png

f225fe38-662e-11ed-8abf-dac502259ad0.png

讲了这么多,看都看累了吧?然而我们还并没有穷尽这个库的所有功能。限于篇幅,有些更棒的图表和范例,只好请大家访问 plotly 和 cufflinks 的官方文档去一一查看咯。

f24cd9a4-662e-11ed-8abf-dac502259ad0.jpg

(Plotly 交互式地图,显示了美国国内的风力发电场数据。来源:plot.ly)

最后……

关于沉没成本谬误,最糟糕的一点在于,人们往往只能在放弃之前的努力时,才能意识到自己浪费了多少时间。 在选择一款绘图库的时候,你最需要的几个功能有:

快速探索数据所需的一行代码图表

拆分/研究数据所需的交互式元素

当需要时可以深入细节信息的选项

最终展示前能轻易进行定制

从现在看来,要用 Python 语言实现以上功能的最佳选择非 plotly 莫属。它让我们快速生成可视化图表,交互功能使我们更好地理解信息。 我承认,绘图绝对是数据科学工作中最让人享受的部分,而 plotly 能让你更加愉悦地完成这些任务。

f262a888-662e-11ed-8abf-dac502259ad0.png

(用一张图表显示一下用 Python 绘图的愉悦程度随着时间变化。来源 towardsdatascience.com) 2022年是时候升级你的 Python 绘图库了,让自己在数据科学和可视化方面变得更快、更强、更美吧!

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 开源
    +关注

    关注

    3

    文章

    3320

    浏览量

    42473
  • 可视化
    +关注

    关注

    1

    文章

    1194

    浏览量

    20934
  • python
    +关注

    关注

    56

    文章

    4792

    浏览量

    84630

原文标题:功能强大的开源 Python 绘图库

文章出处:【微信号:DBDevs,微信公众号:数据分析与开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电气图库-元件CAD

    电气图库-元件CAD
    发表于 11-24 13:57 2次下载

    Python编程:处理网络请求的代理技术

    在网络编程中,代理技术扮演着至关重要的角色,尤其在处理网络请求时。通过代理服务器,我们可以实现请求的转发、缓存、负载均衡以及安全控制等功能Python作为一种功能强大的编程语言,为提供了丰富的工具和库,以便敏捷地实现和处理网络
    的头像 发表于 11-12 07:23 185次阅读

    开源项目】你准备好DIY一款功能强大的机器人了吗?

    欢迎来到DIY SMARS Robot 机器人制作教程!在本教程中,将教你制作这款功能强大的机器人,它配备了OLED显示屏、RGB LED灯和可播放旋律的蜂鸣器等新功能。一起来设计电路、组装PCB
    发表于 11-08 10:53

    ATMEL原理图库

    ATMEL原理图库
    发表于 09-27 11:49 0次下载

    如何帮助孩子高效学习Python:开源硬件实践是最优选择

    显著提升孩子的学习兴趣和对Python原理的理解。本文将探讨为何使用Raspberry Pi(树莓派)或Unihiker(行空板)等开源硬件是孩子们掌握Python的最佳途径。 让孩子们在Py
    的头像 发表于 09-06 09:49 307次阅读

    功能强大的网络通讯工具,支持各类TCP、UDP、HTTP的通讯协议

    功能强大的网络通讯工具,支持各类TCP、UDP、HTTP的通讯协议,简单方便,包含历史记忆功能,体积小,服务器调试最合适
    发表于 09-05 11:51 0次下载

    第二届大会回顾第25期 | OpenHarmony上的Python设备应用开发

    Python以其简单、易学和功能强大而闻名,有着广泛的用户群体。采用Python开发有助于降低OpenHarmony的学习门槛。如何在OpenHarmony上用Python开发设备应用
    的头像 发表于 08-27 11:53 682次阅读
    第二届大会回顾第25期 | OpenHarmony上的<b class='flag-5'>Python</b>设备应用开发

    Python建模算法与应用

    Python作为一种功能强大、免费、开源且面向对象的编程语言,在科学计算、数学建模、数据分析等领域展现出了卓越的性能。其简洁的语法、对动态输入的支持以及解释性语言的本质,使得Python
    的头像 发表于 07-24 10:41 528次阅读

    opencv-python和opencv一样吗

    不一样。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它提供了大量的图像和视频处理功能。OpenCV-Python
    的头像 发表于 07-16 10:38 1161次阅读

    Python在人工智能领域的应用

    功能强大的编程语言,成为了人工智能研究和开发的首选工具之一。本文将深入探讨Python在人工智能领域的广泛应用,分析其优势、具体应用案例以及未来的发展趋势。
    的头像 发表于 07-02 18:20 1111次阅读

    PyTorch与PyCharm的区别

    在深入探讨PyTorch与PyCharm的区别时,我们首先需要明确两者在计算机科学和数据科学领域中的不同定位和功能。PyTorch是一个开源的深度学习库,而PyCharm则是一款功能强大
    的头像 发表于 07-02 12:36 2992次阅读

    Python自动化测试框架及其应用

    Pytest是一个非常成熟的全功能Python测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,功能
    的头像 发表于 04-03 16:15 550次阅读
    <b class='flag-5'>Python</b>自动化测试框架及其应用

    数明半导体推出一款功能强大且应用灵活的电机驱动芯片—SiLM9408/09

    数明半导体最新推出的SiLM9408/09是一款功能强大且应用灵活的电机驱动芯片,以其双通道H桥设计、低饱和压降特性和广泛的适用性,满足日益复杂多变的电机控制需求,尤其适合应用于12V或24V的电源供电系统。
    的头像 发表于 03-19 16:38 1853次阅读
    数明半导体推出一款<b class='flag-5'>功能强大</b>且应用灵活的电机驱动芯片—SiLM9408/09

    瑞萨电子推出功能强大的单芯片RZ/V2H MPU

    瑞萨电子针对下一代机器人领域的需求,推出了一款功能强大的单芯片RZ/V2H MPU。这款芯片是瑞萨电子在技术创新上的又一重要成果,它专为具备视觉AI和实时控制功能的机器人设计,将助力机器人领域实现更高效的性能提升。
    的头像 发表于 03-08 11:01 1159次阅读

    基于Docker Compose部署RabbitMQ的经验分享

    RabbitMQ 是一个功能强大开源消息队列系统,它实现了高效的消息通信和异步处理。
    的头像 发表于 01-03 10:22 1925次阅读
    基于Docker Compose部署RabbitMQ的经验分享