0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

TC3xx SWAP特性实现SOTA功能的配置和流程介绍

汽车ECU开发 来源:英飞凌汽车电子生态圈 作者:宋兰中 2022-11-21 09:28 次阅读

什么是OTA

OTA:Over-the-Air Technology,即空中下载技术。

OTA升级:通过OTA方式实现固件或软件的升级。通过无线通信方式实现软件升级,都可以叫OTA升级,比如无线以太网/蓝牙等。

HSM:Hardware Security Module 模块保证刷写的安全可靠。

OTA 系统功能示意如图1所示:

1eb9a8a2-6934-11ed-8abf-dac502259ad0.png

图1 系统功能示意图

几种常见的OTA实现方式比较及优势分析

在进行SOTA更新时,需要把旧的应用程序擦除,把新的应用程序写入。常规的实现方式需要分别开发BootLoader程序和APP程序,MCU上电先运行BootLoader,BootLoader根据情况选择是否跳转到APP和是否进行程序更新。具体来说有以下几种方式:

1

方案一

BootLoader中内置通讯协议栈,更新时,先向MCU发送指令使其跳转到BootLoader,之后先擦除旧APP,在接收新APP的同时直接将其写入Flash的APP运行地址处。该方案的优点是不需要额外的Flash暂存数据,缺点是BootLoader代码更复杂,且如果数据传输发生中断,旧的APP将不能被恢复。该方案更适合Flash容量较小的MCU。

2

方案二

更新程序时,由APP接收更新数据并暂存于Flash,再将APP更新标志位置位;MCU重启时,BootLoader检查更新标志位,如有效,则擦除旧的APP,再将暂存于Flash的新APP数据写入APP运行地址处。该方案的优点是更新数据的接收由APP完成,BootLoader不需要通讯协议栈,代码量更小,且数据传输中断时,原有APP不损坏。缺点是需要额外的Flash空间暂存更新数据。

3

方案三

在Flash中划分出两块相同大小的区域,分为A区和B区,都用来存放APP,但同一时间下只有一个区的APP是有效的,分别设置一个标志位标识其有效性。初始状态下先将APP写入A区,更新的时候,将新的APP写入B区,再把A区的APP擦除,同时更新两个区的有效性标志位状态。BootLoader中判断哪个区的APP有效,就跳转到哪个区运行。这种方法不需要重复拷贝APP数据,但最大的一个缺陷是AB区的APP程序运行地址不同,需要分别编译,从而使得可应用性大大降低。

注释:同时也可以将方案一和方案二相结合,即先采用方案一在BootLoader程序中内置通讯协议栈,更新时,先向MCU发送指令使其跳转到BootLoader。之后接收更新数据的时候,采用方案二的方法,先将数据暂存于Flash,待数据全部接收完成后再擦除旧的APP,写入新的APP。结合方案一和方案二的优点,且能在没有APP或APP损坏的状态下实现程序更新。缺点是BootLoader代码量更大,Flash空间占用更大。

英飞凌AURIX TC3xx实现上述SOTA方案拓扑图,如图2 所示:

1ec0ed6a-6934-11ed-8abf-dac502259ad0.png

图2 TC3xx实现SOTA方案常见拓扑图

经过上面的分析,可以看到几种常见方案都有其优缺点。但对于TC3xx这一类的MCU来说,Flash容量通常都很大,足够用,所以通常可以先把APP暂存下来再进行更新,防止数据传输中断导致APP不可用。

同时AURIX TC3xx也支持AB SWAP功能。以方案三为例:TC3xx系列如果使能SOTA功能,它的AB Bank Flash物理地址支持两种不同物理地址映射到同一个逻辑地址方式(MCU自动从两种物理地址映射一个虚拟地址),从而使得APP编译时不需要区分AB区,使用相同的逻辑地址即可,从而避免了方案三的硬伤,为我们提供了一种最佳的SOTA方案。接下来,我们将以方案三作为基础,结合实例详细讲解使用英飞凌AURIX TC3xx如何实现更优的SOTA。

推荐的OTA实现方式详解

TC3xx的Flash地址映射方式

首先, TC33x和TC33xED不支持AB SWAP功能,其他TC3xx设备都能够通过AB SWAP功能实现SOTA软件更新。

TC3xx 如果使能了AB SWAP功能,Flash大小实际能用的最少减半,TC3xx各系列AB SWAP能力如图3所示。

1ee91128-6934-11ed-8abf-dac502259ad0.png

图3 TC3xx支持AB SWAP功能芯片系列及映射关系

启用SOTA功能时,通过将PFLASH拆分为两A和B两个Bank的能力,其中一组可以读取和执行BANK组,而另一组可以写入新代码。因此虽然单个物理PFLASH Bank中不支持同时读写(RWW)功能,但是通过AB分组支持未使用的BANK组提供安全可靠地对数据执行写入和擦除操作的能力来实现SOTA功能。

举例TC387 AB SWAP特性

为了方便理解英飞凌TC3xx SOTA 功能,我们以TC387为例进行分析。TC387 PFLASH 10M空间映射关系,使能了AB SWAP后,实际使用大小为4M,如图4所示:

1eefaaec-6934-11ed-8abf-dac502259ad0.png

图4 TC387 PFLASH 映射关系以及可用PFLASH大小

TC387的4M PFlash地址空间无论是A Bank还是B Bank, 对于用户来说,统一为虚拟地址0X80000000-0x803FFFFF 4M地址空间。但是刷写过程中, A bank实际操作物理地址0X80000000-0x803FFFFF 4M空间,B Bank 实际操作物理地址0X8060 0000-0x80AF FFFF 4M空间。

注意,如果使能了AB SWAP功能,TC3xx PFLASH就没有所谓Local PFLASH和Global PFLASH概念,统一理解为Global PFLASH。CPU访问PFLASH由之前的CPUx可以通过Local总线访问本PFLASHx提高访问速度,变为CPUx访问PFLASH只能通过Global总线从而稍微增加了CPU访问PFLASH时间。具体参考图5所示。

1ef8693e-6934-11ed-8abf-dac502259ad0.png

图5 SOTA功能使能后只能通过Global总线访问PFLASH

TC3xx的SOTA功能描述

当TC387 SOTA功能激活时,PFLash被划分为两部分A Bank和B Bank,一部分用来存储读取可执行代码(active bank),另一部分可用来写入(inactive bank)即刷写。当APP更新完毕后,两个部分互换,即切换上面两种地址映射方式。在标准模式下使用PF0-1作为active bank,后文称作组A,在Alternate模式下使用PF2-3作为active bank,后文称作组B,就可以实现第二章节所述方案三,且能写入完全相同的APP程序,以相同的地址(逻辑地址)进行运行。

需要注意的是,所有NVM操作都是通过DMU使用PFLASH的物理系统地址执行的,也就是说,NVM操作总是使用标准的地址映射,而不管选择使用哪种地址映射。“NVM操作”是一个术语,用于任何针对FLASH的命令,如程序、擦除等,但不包括读取代码。有关SOTA地址映射的参数在Flash中的UCB(User Configuration Block)中进行配置,在UCB中配置后,只有当下次MCU复位的时候才会更新配置,后文会有详细解释。

TC3xx的SOTA功能实现详解

实现SOTA功能所需关注配置项

英飞凌AURIX TC3xx实现SOTA功能主要需要配置如图6所示:

1f00ee6a-6934-11ed-8abf-dac502259ad0.png

图6 SOTA功能所需关注配置项

1

SOTA模式使能UCB_OTP.PROCONTP.SWAPEN,该参数决定是否开启SOTA模式,在寄存器Tuning Protection Configuration中的SWAPEN进行配置,对应UCB定义如下:

使能AB SWAP功能的UCB定义(UCB32-39是ORIG, 40-47 COPY,建议全部都需要配置,内容可以一样。)如下:

1f2d1fee-6934-11ed-8abf-dac502259ad0.png1f3364d0-6934-11ed-8abf-dac502259ad0.png1f5e52b2-6934-11ed-8abf-dac502259ad0.png1f6b77da-6934-11ed-8abf-dac502259ad0.png

2

配置UCB_SWAP_ORIG/UCB_SWAP_COPY中的UCB_SWAP_ORIG_MARKERLx/UCB_SWAP_COPY_MARKERLx,激活下一次reset需要运行的标准(0x00000055)还是备选(0x000000AA)地址。在寄存器SCU_SWAPCTRL中,可以查看当前激活的是标准还是备选地址。

我们参考下面关于SOTA功能实现的UCB,内容定义:

1f75593a-6934-11ed-8abf-dac502259ad0.png1f7da00e-6934-11ed-8abf-dac502259ad0.png1f87dd30-6934-11ed-8abf-dac502259ad0.png1f9647ee-6934-11ed-8abf-dac502259ad0.png

1fbb53a4-6934-11ed-8abf-dac502259ad0.png

3

同1描述UCB块,只要使能了SOTA就会自动禁止CPU通过本地总线访问PFLASH功能,红色方框中寄存器值自动为1,即禁止。

1fc09b7a-6934-11ed-8abf-dac502259ad0.png1fc585fe-6934-11ed-8abf-dac502259ad0.png1fd09a48-6934-11ed-8abf-dac502259ad0.png

SOTA功能实现时SWAP配置及流程

SOTA功能应用时:分系统刚启动时SWAP配置和系统运行时SWAP配置。

系统启动时SWAP配置:

如果SOTA功能使能,那么代码生成的文件至少需要刷进Active Bank。为了信息安全,建议通过UCB_PFLASH设置相应的sectors读写保护。

起始地址需要在UCB_BMHD配置好。

如果当前选择的是标准地址,那么0x00000055H需要写入UCB_SWAP的MARKERL0.SWAP这个域。然后通过把MARKERL0.SWAP的地址写入MARKERH0.ADDR予以确认;同时,将CONFIRMATIONL0.CODE的地址写入CONFIRMATIONH0.ADDR;同时,将57B5327FH写入57B5327FH予以确认。

UCB_ OTP一次性刷写保护以设置所需的OTP、WOP和标定保护。请注意,任何受OTP或WOP保护的扇区都不能使用新映像重新编程

如果使能了HSM,主核代码和HSM代码需要同时刷入到AB bank的PFLASH S0-S39。

任何受OTP保护的HSM扇区都不能使用新映像重新编程。

最后,由于SWAPEN是在UCB_OTP里面设置的,所以要在下一个重启后SOTA的使能才有效。具体流程,参考图7所示:

1fda7c34-6934-11ed-8abf-dac502259ad0.png

图7 系统刚启动时SWAP配置及流程

系统运行时SWAP配置:

下面是程序正在运行时,需要实现软件SWAP到新程序的配置流程。

为了可以正确切换到新程序中,首先新的程序需要刷到对应的非激活的PFLASH Bank,如果非激活的BANK中对应的sectors使能了读写保护,那么刷写之前要先解保护。

切记:由于NVM特性,PFLASH 和DFLASH不能同时操作。因此,在应用程序中运行的EEPROM驱动程序和执行BOOT刷写之间需要进行一些协调。确保要写入的新程序所用的的PFLASH正确无误。例如:如果在PFLASH的SOTA重新编程/擦除期间出现硬故障,可以使用替换逻辑扇区功能(有关更多详细信息,请参阅DMU章节)。此功能允许用户使用“替换逻辑扇区”命令序列将故障逻辑扇区映射到冗余扇区。

由于UCB刷写次数的限制(100次),我们可以通过16 个SWAP配置依次使用来增加SWAP的次数(100*16=1600次)。方式流程如下图8所示:

注意:上一次用过的配置,CONFIRMATIONL(x-1) ) 和CONFIRMATIONH(x-1) 全写为1。

增加SWAP次数,可以通过UCB_SWAP_ORIG/UCB_SWAP_COPY配置如下寄存器:

1f9647ee-6934-11ed-8abf-dac502259ad0.png1feb935c-6934-11ed-8abf-dac502259ad0.png1ff34214-6934-11ed-8abf-dac502259ad0.png20015188-6934-11ed-8abf-dac502259ad0.png20084e0c-6934-11ed-8abf-dac502259ad0.png

增加SWAP次数方法流程如图8所示:

200eb27e-6934-11ed-8abf-dac502259ad0.png

图8 增加SWAP次数方法流程

新的配置写好后,选择下一次要激活的程序,等下一次重启即运行新刷写的程序。详细流程如图9所示:

2014c664-6934-11ed-8abf-dac502259ad0.png

图9 系统运行时SWAP配置

总结

TC3xx SWAP特性实现OTA功能后,特别注意以下五点:

Flash大小实际能用的最少减半,详情参考图3。

CPU访问Flash只能通过Global总线从而稍微增加了访问时间,参考图5。详细参数请查相应的数据手册。

PFLASH的prefetch功能被禁止,同样会稍微影响整个系统的性能。

功能安全方面:Active Bank 的safety_endinit保护依旧存在,但是Inactive Bank的safety_endinit保护无效。

信息安全方面:Active Bank 和Inactive Bank同样受信息安全相关寄存器的保护。

至此,TC3xx SWAP特性实现SOTA功能的配置和流程介绍完毕。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • mcu
    mcu
    +关注

    关注

    146

    文章

    17123

    浏览量

    350950
  • SWAP
    +关注

    关注

    0

    文章

    51

    浏览量

    12820
  • OTA
    OTA
    +关注

    关注

    7

    文章

    578

    浏览量

    35191

原文标题:AURIX™ TC3xx基于以太网的OTA研究与实现

文章出处:【微信号:eng2mot,微信公众号:汽车ECU开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    英飞凌TC3XX系列多核MCU学习笔记(1)

    声明:本文是在学习英飞凌 TC3XX系列多核 MCU 过程中整理的笔记,便于后期复习!
    发表于 09-19 09:54 2538次阅读
    英飞凌<b class='flag-5'>TC3XX</b>系列多核MCU学习笔记(1)

    TC3xx芯片的Endinit功能详解

    上锁Endinit。那什么是Endinit功能了? -- 本文就来详细解锁TC3xx芯片的Endinit机制。
    的头像 发表于 11-27 09:23 2283次阅读
    <b class='flag-5'>TC3xx</b>芯片的Endinit<b class='flag-5'>功能</b>详解

    TC3xx芯片时钟系统的锁相环PLL详解

    的Tick数就是基于模块时钟的)。本系列文章就来详细介绍TC3xx芯片的时钟系统及其具体配置。本文为TC3xx芯片时钟系统的锁相环PLL详解。
    的头像 发表于 12-01 09:37 2577次阅读
    <b class='flag-5'>TC3xx</b>芯片时钟系统的锁相环PLL详解

    英飞凌TC3xx系列安全管理单元的使用

    本篇文档主要用来介绍英飞凌基于AURIX-2G TriCore 1.6.2架构的 TC3xx系列安全管理单元的使用。
    的头像 发表于 12-07 09:29 2099次阅读
    英飞凌<b class='flag-5'>TC3xx</b>系列安全管理单元的使用

    SWAP是否适用于两个用于TC3xx系列控制器的独立软件?

    目前正在使用 Swap/Partitions 概念实现 SOTATC3xx 系列)。 检查为应用程序和引导加载程序实施 SOTA 的可行性
    发表于 01-30 07:56

    TC3xx系列怎么禁用trap?

    目前在TC3xx调试flash读写功能,单独运行flash相关功能没有问题,但将flash相关功能集成到工程中。操作pflash就会进入trap中,查看了一些帖子说是要禁掉trap?请
    发表于 01-31 06:21

    TC3xx系列是否支持RTC功能

    请教各位,TC3xx系列芯片是否支持RTC功能,目前要记录snapshot的时间点(年月日时分秒)。
    发表于 02-02 07:53

    TC3xx的HSM中有没有单调计数器?

    你好, 我看到 OPTIGA 有单调计数器,但我在 TC3xx 的 HSM 中确实找不到单调计数器。 能否确认TC3xx的HSM中没有单调计数器?
    发表于 03-05 07:56

    TSIM是否支持TC3xx系列在没有硬件的情况下调试应用程序?

    你好, TSIM是否支持TC3xx系列在没有硬件的情况下调试应用程序? AURIX TC3xx - Free Entry ToolChain 是否有助于实现上述目的?
    发表于 05-17 07:02

    基于TC3xx SWAP特性实现SOTA功能配置流程

    OTA升级:通过OTA方式实现固件或软件的升级。通过无线通信方式实现软件升级,都可以叫OTA升级,比如无线以太网/蓝牙等。
    的头像 发表于 11-21 09:28 1659次阅读

    AUTOSAR MCAL-基于Infineon TC3xx芯片的ADC模块

    ADC模块的配置,和芯片特性强相关的地方还是有很多地方(AUTOSAR MCAL标准定义的配置项都是一样的),本文将详细介绍基于Infineon T
    的头像 发表于 01-29 16:45 8512次阅读

    AURIX™ TC3xx NVM是非易失性存储器学习笔记

    TC3xx芯片最多有6个内核,每个核有自己的私有的Memory以及共有的Memory。
    发表于 06-19 09:09 6945次阅读
    AURIX™ <b class='flag-5'>TC3xx</b> NVM是非易失性存储器学习笔记

    TC3xx芯片DMU介绍

    AUTOSAR架构图下的Fls模块对上(Fee)模块提供统一的标准接口,但是具体的实现因不同的芯片而不一样,Infineon公司的Fls模块通过操作TC3xx芯片的DMU模块实现Fls的功能
    的头像 发表于 08-31 14:10 1886次阅读
    <b class='flag-5'>TC3xx</b>芯片DMU<b class='flag-5'>介绍</b>

    TC3xx芯片的MPU功能详解

    在前面的文章文章中我们介绍了RH850-U2A的内存保护单元(MPU),了解了MPU的概念以及在RH850-U2A上的具体使用流程,但是对于TC3
    的头像 发表于 09-19 11:42 2312次阅读
    <b class='flag-5'>TC3xx</b>芯片的MPU<b class='flag-5'>功能</b>详解

    深入解析TC3xx芯片中的SMU模块应用

    TC3xx芯片是德国英飞凌半导体公司推出的汽车级处理器芯片系列,其中的SMU(System Management Unit)模块是其重要组成部分之一。SMU模块在TC3xx芯片中具有重要的系统管理
    的头像 发表于 03-01 18:08 1731次阅读