0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

在NGC上玩转图像分割!NeurIPS顶会模型、智能标注10倍速神器、人像分割SOTA方案、3D医疗影像分割利器应有尽有

NVIDIA英伟达 来源:未知 2022-11-21 21:05 次阅读

PaddleSeg 近期带来重大升级,覆盖最新顶会模型、10 倍提速的智能标注工具、实时人像分割 SOTA 方案、全新 3D 医疗影像分割方案等。欢迎广大开发者使用 NVIDIA 与飞桨联合深度适配的 NGC 飞桨容器在 NVIDIA GPU 上体验!

PaddleSeg 重磅发新!带来 NeurIPS 顶会模型、智能标注 10 倍速神器、人像分割 SOTA 方案、3D 医疗影像分割利器!

图像分割是计算机视觉三大任务之一,基于深度学习的图像分割技术也发挥日益重要的作用,广泛应用于工业质检、自动驾驶、遥感、智慧医疗、智能办公、媒体娱乐等行业。然而在实际业务中,图像分割依旧面临诸多挑战,比如:分割数据标注效率较低,标注过程自动化程度低;垂类场景多样,打造全流程方案的难度大;针对 3D 分割的方案较少。

针对以上挑战,飞桨图像分割开源套件 PaddleSeg 近期带来重磅升级,主要包括:

  • 官方开源 NeurIPS 2022 顶会发表的实时语义分割模型 RTFormer。该模型结合 CNN 和 Transformer 的优点,创新设计并使用了高效的 RTFormer Block。对比其他实时语义分割模型,RTFormer 在多个数据集上实现 SOTA 精度和速度。详情可参考:https://mp.weixin.qq.com/s/qmEhcHhAqefqp2keazbJ0g

47023b00-699b-11ed-8abf-dac502259ad0.png

图 1 RTFormer Block架构

  • 针对标注数据的难题,发布智能标注平台 EISeg 正式版。EISeg 支持医疗、遥感、工业质检等领域的分割标注,新增视频分割标注,分割标注效率提升超过10 倍。详情可参考:https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.6/EISeg。

47119474-699b-11ed-8abf-dac502259ad0.gif

图 2 智能标注平台 EISeg

  • 针对人像分割场景,发布实时人像分割 SOTA 方案 PP-HumanSegV2。该方案的推理速度提升 87.15%,分割精度达到 96.63%,可视化效果更佳,可与商业收费方案媲美,支持零成本开箱即用。详情可参考:https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.6/contrib/PP-HumanSeg

48918bd8-699b-11ed-8abf-dac502259ad0.png

图 3 PP-HumanSegV2 模型架构

  • 针对 3D 医疗分割场景,发布 3D 医疗影像分割方案 MedicalSegV2。该方案支持 3D 交互式标注,实现高精度、定制化、全流程医疗影像分割。详情可参考:https://github.com/PaddlePaddle/PaddleSeg/tree/develop/contrib/MedicalSeg

48b24fda-699b-11ed-8abf-dac502259ad0.gif

图 4 3D 医疗影像分割效果

喜欢的小伙伴欢迎 star 支持哦~您的支持是我们不断进取的最大动力!

493e9652-699b-11ed-8abf-dac502259ad0.png

围绕 PP-HumanSegV2、EISeg、MedicalSeg,PaddleSeg 团队近期进行了三日课直播。大家可以扫描下方二维码,加入 PaddleSeg 交流群获取回放视频。除此之外,入群还可以领取 30G 学习大礼包,包括:深度学习基础教程、图像分割论文合集、PaddleSeg 历次直播视频、图像分割应用案例和企业范例等。

497683b4-699b-11ed-8abf-dac502259ad0.png

NGC 飞桨容器介绍

如果您希望体验 PaddleSeg 工具的新特性,欢迎使用 NGC 飞桨容器。NVIDIA 与百度飞桨联合开发了 NGC 飞桨容器,将最新版本的飞桨与最新的 NVIDIA 的软件栈(如 CUDA)进行了无缝的集成与性能优化,最大程度的释放飞桨框架在 NVIDIA 最新硬件上的计算能力。这样,用户不仅可以快速开启 AI 应用,专注于创新和应用本身,还能够在 AI 训练和推理任务上获得飞桨+NVIDIA 带来的飞速体验。

最佳的开发环境搭建工具 - 容器技术。

  1. 容器其实是一个开箱即用的服务器。极大降低了深度学习开发环境的搭建难度。例如你的开发环境中包含其他依赖进程(redis,MySQL,Ngnix,selenium-hub 等等),或者你需要进行跨操作系统级别的迁移。

  2. 容器镜像方便了开发者的版本化管理

  3. 容器镜像是一种易于复现的开发环境载体

  4. 容器技术支持多容器同时运行

49858e68-699b-11ed-8abf-dac502259ad0.png

最好的 PaddlePaddle 容器

NGC 飞桨容器针对 NVIDIA GPU 加速进行了优化,并包含一组经过验证的库,可启用和优化 NVIDIA GPU 性能。此容器还可能包含对 PaddlePaddle 源代码的修改,以最大限度地提高性能和兼容性。此容器还包含用于加速 ETL(DALI, RAPIDS、训练(cuDNN, NCCL)和推理(TensorRT)工作负载的软件。

PaddlePaddle 容器具有以下优点:

  1. 适配最新版本的 NVIDIA 软件栈(例如最新版本 CUDA),更多功能,更高性能。

  2. 更新的 Ubuntu 操作系统,更好的软件兼容性

  3. 按月更新

  4. 满足 NVIDIA NGC 开发及验证规范,质量管理

通过飞桨官网快速获取

49956158-699b-11ed-8abf-dac502259ad0.png

环境准备

使用 NGC 飞桨容器需要主机系统(Linux)安装以下内容:

  • Docker 引擎

  • NVIDIA GPU 驱动程序

  • NVIDIA 容器工具包

有关支持的版本,请参阅 NVIDIA 框架容器支持矩阵NVIDIA 容器工具包文档

不需要其他安装、编译或依赖管理。无需安装 NVIDIA CUDA Toolkit。

NGC 飞桨容器正式安装:

要运行容器,请按照 NVIDIA Containers For Deep Learning Frameworks User’s Guide 中 Running A Container 一章中的说明发出适当的命令,并指定注册表、存储库和标签。有关使用 NGC 的更多信息,请参阅 NGC 容器用户指南。如果您有 Docker 19.03 或更高版本,启动容器的典型命令是:

49d77408-699b-11ed-8abf-dac502259ad0.png

*详细安装介绍 《NGC 飞桨容器安装指南》

https://www.paddlepaddle.org.cn/documentation/docs/zh/install/install_NGC_PaddlePaddle_ch.html


*详细产品介绍视频

【飞桨开发者说|NGC 飞桨容器全新上线 NVIDIA 产品专家全面解读】

https://www.bilibili.com/video/BV16B4y1V7ue?share_source=copy_web&vd_source=266ac44430b3656de0c2f4e58b4daf82

飞桨与 NVIDIA NGC 合作介绍

NVIDIA 非常重视中国市场,特别关注中国的生态伙伴,而当前飞桨拥有超过 470 万的开发者。在过去五年里我们紧密合作,深度融合,做了大量适配工作,如下图所示。

49e5832c-699b-11ed-8abf-dac502259ad0.png

今年,我们将飞桨列为 NVIDIA 全球前三的深度学习框架合作伙伴。我们在中国已经设立了专门的工程团队支持,赋能飞桨生态。

为了让更多的开发者能用上基于 NVIDIA 最新的高性能硬件和软件栈。当前,我们正在进行全新一代 NVIDIA GPU H100 的适配工作,以及提高飞桨对 CUDA Operation API 的使用率,让飞桨的开发者拥有优秀的用户体验及极致性能。

以上的各种适配,仅仅是让飞桨的开发者拥有高性能的推理训练成为可能。但是,这些离行业开发者还很远,门槛还很高,难度还很大。

为此,我们将刚刚这些集成和优化工作,整合到三大产品线中。其中 NGC 飞桨容器最为闪亮。

NVIDIA NGC Container – 最佳的飞桨开发环境,集成最新的 NVIDIA 工具包(例如 CUDA)

4a092084-699b-11ed-8abf-dac502259ad0.png

点击查看往期精彩内容

一:在 NVIDIA NGC 上搞定模型自动压缩,YOLOv7 部署加速比 5.90,BERT 部署加速比 6.22

二:在 NVIDIA NGC 上体验轻量级图像识别系统

三:在 NVIDIA NGC 上体验一键 PDF 转 Word

四:PaddleDetection 发新,欢迎在 NVIDIA NGC 飞桨容器中体验最新特性!

五:NVIDIA Deep Learning Examples飞桨ResNet50模型上线训练速度超PyTorch ResNet50


原文标题:在NGC上玩转图像分割!NeurIPS顶会模型、智能标注10倍速神器、人像分割SOTA方案、3D医疗影像分割利器应有尽有!

文章出处:【微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英伟达
    +关注

    关注

    22

    文章

    3707

    浏览量

    90601

原文标题:在NGC上玩转图像分割!NeurIPS顶会模型、智能标注10倍速神器、人像分割SOTA方案、3D医疗影像分割利器应有尽有!

文章出处:【微信号:NVIDIA_China,微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    画面分割器怎么调试

    对视频信号、设备接口、软件设置等方面有深入的了解。 画面分割器调试概述 开始调试画面分割器之前,我们需要了解一些基本概念和术语,以便更好地进行后续的操作。 1. 画面分割器的工作原理
    的头像 发表于 10-17 09:32 198次阅读

    画面分割器怎么连接

    器的基本原理 画面分割器的工作原理是通过数字信号处理技术,将多个视频信号源(如摄像头、DVR等)的图像数据进行处理,然后一个监视器分割
    的头像 发表于 10-17 09:29 175次阅读

    图像语义分割的实用性是什么

    图像语义分割是一种重要的计算机视觉任务,它旨在将图像中的每个像素分配到相应的语义类别中。这项技术许多领域都有广泛的应用,如自动驾驶、医学图像
    的头像 发表于 07-17 09:56 320次阅读

    图像分割和语义分割的区别与联系

    图像分割和语义分割是计算机视觉领域中两个重要的概念,它们图像处理和分析中发挥着关键作用。 1. 图像
    的头像 发表于 07-17 09:55 574次阅读

    图像分割与目标检测的区别是什么

    图像分割与目标检测是计算机视觉领域的两个重要任务,它们许多应用场景中都发挥着关键作用。然而,尽管它们某些方面有相似之处,但它们的目标、方法和应用场景
    的头像 发表于 07-17 09:53 940次阅读

    图像分割与语义分割中的CNN模型综述

    图像分割与语义分割是计算机视觉领域的重要任务,旨在将图像划分为多个具有特定语义含义的区域或对象。卷积神经网络(CNN)作为深度学习的一种核心模型
    的头像 发表于 07-09 11:51 548次阅读

    机器人视觉技术中常见的图像分割方法

    机器人视觉技术中的图像分割方法是一个广泛且深入的研究领域。图像分割是将图像划分为多个区域或对象的过程,这些区域或对象具有某种共同的特征,如颜
    的头像 发表于 07-09 09:31 369次阅读

    机器人视觉技术中图像分割方法哪些

    机器人视觉技术是人工智能领域的一个重要分支,它涉及到图像处理、模式识别、机器学习等多个学科。图像分割是机器人视觉技术中的一个重要环节,它的目标是从一幅
    的头像 发表于 07-04 11:34 646次阅读

    SegRefiner:通过扩散模型实现高精度图像分割

    一类常见的 Refinement 方法是 Model-Specific 的,其通过已有分割模型中引入一些新模块,从而为预测 Mask 补充了更多额外信息,从而增强了已有模型对于细节的
    的头像 发表于 12-28 11:24 1352次阅读
    SegRefiner:通过扩散<b class='flag-5'>模型</b>实现高精度<b class='flag-5'>图像</b><b class='flag-5'>分割</b>

    【爱芯派 Pro 开发板试用体验】+ 图像分割和填充的Demo测试

    上进行了训练——准确地说,1100万张图像中,超过10亿个掩码。这是一个相当大的数字。即便如此,SAM 如何知道要在图像
    发表于 12-26 11:22

    基于YOLOv8的自定义医学图像分割

    YOLOv8是一种令人惊叹的分割模型;它易于训练、测试和部署。本教程中,我们将学习如何在自定义数据集使用YOLOv8。但在此之前,我想告诉你为什么
    的头像 发表于 12-20 10:51 698次阅读
    基于YOLOv8的自定义医学<b class='flag-5'>图像</b><b class='flag-5'>分割</b>

    三项SOTA!MasQCLIP:开放词汇通用图像分割新网络

    MasQCLIP开放词汇实例分割、语义分割和全景分割三项任务均实现了SOTA,涨点非常明显。
    的头像 发表于 12-12 11:23 711次阅读
    三项<b class='flag-5'>SOTA</b>!MasQCLIP:开放词汇通用<b class='flag-5'>图像</b><b class='flag-5'>分割</b>新网络

    PanopticNeRF-360:快速生成大量新视点全景分割图像

    PanopticNeRF-360是PanopticNeRF的扩展版本,借助3D标注快速生成大量的新视点全景分割和RGB图,并引入几何-语义联合优化来解决交叉区域的类别模糊问题,对于数据标注
    发表于 11-30 10:25 405次阅读
    PanopticNeRF-360:快速生成大量新视点全景<b class='flag-5'>分割</b><b class='flag-5'>图像</b>!

    NeurlPS&apos;23开源 | 首个!开放词汇3D实例分割

    我们介绍了开放词汇3D实例分割的任务。当前的3D实例分割方法通常只能从训练数据集中标注的预定义的封闭类集中识别对象类别。这给现实世界的应用程
    的头像 发表于 11-14 15:53 543次阅读
    NeurlPS&apos;23开源 | 首个!开放词汇<b class='flag-5'>3D</b>实例<b class='flag-5'>分割</b>!

    基于深度学习的3D点云实例分割方法

    3D实例分割3DIS)是3D领域深度学习的核心问题。给定由点云表示的 3D 场景,我们寻求为每个点分配语义类和唯一的实例标签。
    发表于 11-13 10:34 2016次阅读
    基于深度学习的<b class='flag-5'>3D</b>点云实例<b class='flag-5'>分割</b>方法