0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【工程师笔记】非隔离型变换器电磁干扰(EMI)的分析与建模方法

MPS芯源系统 来源:未知 2022-11-23 12:15 次阅读

点击标题下「MPS芯源系统」可快速关注

对于工程师朋友们来说,EMI问题往往有很多的不确定性,有可能设计到了最后的阶段,EMI反而难以满足需求。

对EMI问题的建模分析,会极为有效的帮助我们进行EMI的设计和优化,甚至从设计之初,就可以对EMI进行预测。










EMI分传导和辐射两部分,传导EMI噪声可通过缆线或其他导体传到受害设备,辐射EMI噪声则是直接通过空间耦合到受害设备上。

这两种噪声因为传播途径的不同,建模和分析方法则需要分别来进行探讨。



传导EMI


传导EMI怎么来分析?

我们一般把它分为两种:差模和共模。

差模噪声(DM)主要在两条线间流动,而共模电流则可通过设备对地的杂散电容以位移电流的形式流到地上,再流回电网。

因为这两种噪声的传播途径和抑制机理不同,我们需要分别进行建模分析。

另外,在测量中,我们可以使用噪声分离器来得到它们(如图1所示),据此就可知道造成EMI超标的原因到底是差模还是共模噪声。

图1传导EMI中的共模和差模噪声

在传导EMI的分析建模中,首先要做的就是把差模和共模路径画出来,并分别进行分析。

图2即为一个Buck电路的共模与差模路径。其中,LF和CF代表输入滤波器的电感和电容。CP和CPO分别代表开关节点和EVB板的地对测试参考地的杂散电容。

图2 Buck电路传导EMI中的共模和差模路径

对于不同的路径来说,EMI建模的第一步是根据替代定理,把开关用电流源或电压源进行等效。以Buck电路的差模分析为例,等效之后,电路各处的电流和电压依然不变(如图3a所示)。

然后可以使用叠加定理来具体分析每一个源的影响(如图3b所示),由于只有经过LISN的电流才会成为EMI噪声,因此我们可以忽略不产生EMI噪声的源(如图3b中的VS2)。

最终,如图4所示,我们就得到了差模噪声模型。可以发现,Buck的差模噪声源即为上管电流,从模型上来看,输入差模噪声的抑制可以通过选择输入电容以及输入滤波器来实现。

图3使用替代定理和叠加定理对差模噪声进行建模分析

图4Buck变换器的差模噪声模型

同理,如图5,图6所示,Buck电路的共模模型也可以使用类似的方法进行分析。在共模分析中,由于输入,输出电容(如CIN,COUT)的阻抗远小于CP和CPO,在分析时,可以认为它们是短路的。

从图6可以看出,对于Buck来说,共模噪声的抑制则可以通过减小CP来实现,具体的做法包括减小开关节点面积、对开关节点进行屏蔽等等。

图5使用替代定理和叠加定理对共模噪声进行建模分析

图6 Buck变换器的共模噪声模型

值得一提的是,以上的分析方法也适用于其他的非隔离变换器,如Boost、Buck-Boost等。




到了这一步,我们就有了基本的EMI模型了,但是如果想要准确预测高频率的EMI(如30MHz以上)我们往往需要考虑各个元件的寄生参数的影响。



图7a展示了常见的EMI被动元件,图7b和7c则分别是电容和电感的高频阻抗模型。在很高的频率下,电容往往会体现出电感的特性,电感也会体现出电阻或者是电容的特性。

a

b

c

图7(a)常见EMI元件(b)电容的高频等效模型(c)电感的高频等效模型

那么我们如何得到EMI元件的各个杂散参数呢?

一般来说,我们可以从供应商处得到,如果供应商无法提供,我们也可以通过阻抗分析仪或者是网络分析仪进行测量。

以一个电感为例,图8即为测量得到的阻抗曲线。由于在不同频段,对阻抗有决定性影响的参数也不同,因此,通过在不同频段取点计算,即可分别得到各个杂散参数。

图8电感的阻抗曲线测量结果

分析高频EMI的时候,PCB走线产生的电感往往不能忽略,在EMI建模的时候也要加以考虑。阻抗分析仪或者网络分析仪不仅可以帮助测量EMI元件,也可以帮助提取PCB板上面的杂散参数。

在我们得到EMI元件和PCB杂散参数后,我们就可以改进图2所示的模型,并进行仿真了。开关上的电压和电流既可以通过实际提取得到,也可以在仿真中使用开关或者IC的模型进行模拟

图9利用仿真软件进行EMI预测

如图10所示,准确提取EMI元件和PCB阻抗的前提下,EMI仿真可以较为准确地预测一个变换器的传导EMI结果

图10EMI仿真结果与实际测量对比



辐射EMI


对于辐射EMI来说,传统手段是使用电磁场理论进行推导和分析,然而,对于工程应用和建模来讲,繁复的公式推导对于理解和解决EMI问题帮助是有限的,而一个有明确物理意义的电路模型将更有帮助。

如下图所示,辐射EMI可以认为主要通过输入线和输出线组成的偶级子天线向空间辐射,而其驱动源则为变换器本身的共模噪声源。

因此,变换器本身可以通过戴维南定理等效为一个电压源和它的串联阻抗,而天线则使用三个阻抗来分别表示其自身损耗,向外辐射的能量,以及储存的近场能量。

我们将变换器天线两个方面进行分析。

图11辐射EMI的产生机理与模型

对于变换器来说,显然,变换器的源越小,辐射的能量也就越小

如下图所示,理想状况下,对于非隔离性变换器来说,输入与输出地之间没有阻抗,而等效的源(VCM)为零,也就不会产生EMI辐射。

但实际上,由于地之间的PCB走线会产生电感,输入端(P1)与输出端(P3)之间也会产生压降,这样就导致了辐射EMI的产生。

图12理想与实际Buck-Boost变换器电路模型

据此,我们可以进行EMI建模,这部分的原理和传导分析是一致的。

首先使用电压源(VSW)和电流源(ID)对开关等效,并使用叠加定理分别分析它们的影响。

如图13所示,我们发现电压源和电流源都会产生辐射噪声。

图13 Buck-Boost变换器辐射EMI的噪声源:(a)电压源(b)电流源

而根据模型,我们可以得到各个源对变换器等效源的传递函数

在实验中,用示波器可以测量电压源电流源的大小;用阻抗分析仪可以测量模型中各个阻抗的大小;再进行计算即可预测等效源的大小。

如下图所示,预测值与实际测量的等效源的值相符。模型的合理性即得到证明。

图14预测与实际测量的Buck-Boost变换器等效源

另一方面,对于天线来说,由于在测试中,线束长度往往是确定的,我们可以根据某个标准下EMI测试中的线束长度和摆放方式,来测量得到它的天线增益

结合我们之前得到的变换器等效源与等效阻抗,我们即可预测实际的辐射EMI噪声。图15a展示了预测的流程和方法,图15b则是预测结果和实际结果的比较。可以看出,两者有很好的吻合度。

图15(a)辐射噪声预测流程与方法(b)辐射噪声预测与实际测量的EMI对比

在本文中,我们分享了非隔离变换器传导与辐射EMI的建模方法,并以Buck变换器Buck-boost变换器作为例子进行了演示。而根据EMI模型,我们既可以分析如何降噪,也可以通过仿真直接对EMI进行预测,以帮助我们进行EMI设计。

更详细内容,可点击本文末“阅读原文”,观看 MPS EMI 专家---李一明博士的详细讲解视频 (建议使用电脑浏览器观看)。

END


往期精彩回顾

【工程师笔记】输出带长线负载的传导EMI的分析与改善

【工程师笔记】反激变换器变压器 EMI 设计的通用方法

【干货】反激电源的EMI分析以及抑制技术

【工程师笔记】高频共模电流、电压和阻抗的测量 —— 以反激变换器为例

春第一“播”:汽车电子 DCDC 芯片的 EMI 优化设计

【工程师笔记】汽车电子非隔离型变换器传导与辐射EMI的产生,传播与抑制

会后总结 | MPS电源EMI分析与优化设计研讨会



扫码关注我们

www.monolithicpower.cn

MPS 深圳:0755-36885818,

china-sz@monolithicpower.com

MPS 上海:021-22251700,

china-sh@monolithicpower.com





“阅读原文”,观看视频学习EMI知识


干货满满的EMI知识分享~


原文标题:【工程师笔记】非隔离型变换器电磁干扰(EMI)的分析与建模方法

文章出处:【微信公众号:MPS芯源系统】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MPS
    MPS
    +关注

    关注

    26

    文章

    255

    浏览量

    64023

原文标题:【工程师笔记】非隔离型变换器电磁干扰(EMI)的分析与建模方法

文章出处:【微信号:MPS芯源系统,微信公众号:MPS芯源系统】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电源变换器的原理和方法

    电源变换器是一种将一种形式的电能转换为另一种形式的电能的设备,广泛应用于各种电子设备和系统中。电源变换器的原理和方法非常多样,涉及到电子学、电力工程、控制理论等多个领域。 电源
    的头像 发表于 09-30 09:27 308次阅读

    何为电磁干扰(EMI)扫描仪,哪里需要它?

    什么是电磁干扰扫描仪?电磁干扰扫描仪(Electromagneticinterferencescanner)又称EMI扫描仪,是属于
    的头像 发表于 08-30 13:02 264次阅读
    何为<b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>(<b class='flag-5'>EMI</b>)扫描仪,哪里需要它?

    拓扑篇丨LLC谐振变换器仿真建模与控制策略分析

    。 上期内容中我们对 LLC谐振变换器的电路结构与工作原理 进行了分析,了解到变换器最为常用的调制方式为脉冲频率调制(PFM)。今天继续为大家分享 LLC谐振变换器的仿真
    发表于 08-12 16:23

    双有源桥变换器简介和仿真案例分析

    双有源桥变换器是一种高效的隔离式双向DC-DC变换器,它的开关信号的占空比为50%。可以应用于电动汽车、超级电容或者电池储能等领域。
    的头像 发表于 07-23 15:36 564次阅读
    双有源桥<b class='flag-5'>变换器</b>简介和仿真案例<b class='flag-5'>分析</b>

    拓扑篇丨LLC谐振变换器仿真建模与控制策略分析

    。上期内容中我们对 LLC谐振变换器的电路结构与工作原理进行了分析,了解到变换器最为常用的调制方式为脉冲频率调制(PFM)。今天继续为大家分享 LLC谐振变换器的仿真
    发表于 07-19 10:17

    LLC谐振变换器仿真建模与控制策略分析

    。上期内容中我们对LLC谐振变换器的电路结构与工作原理进行了分析,了解到变换器最为常用的调制方式为脉冲频率调制(PFM)。今天继续为大家分享LLC谐振变换器的仿真
    的头像 发表于 07-19 08:23 1165次阅读
    LLC谐振<b class='flag-5'>变换器</b>仿真<b class='flag-5'>建模</b>与控制策略<b class='flag-5'>分析</b>

    EMI电磁干扰厂家:如何专业解决电磁干扰问题

    深圳比创达电子EMC|EMI电磁干扰厂家:如何专业解决电磁干扰问题
    的头像 发表于 05-13 11:28 406次阅读
    <b class='flag-5'>EMI</b><b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>厂家:如何专业解决<b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>问题

    使用展频晶振来降低EMI电磁干扰解决EMC辐射超标的问题

    的电子设备要求越来越高,在设计完电路时怎么降低EMI电磁干扰应该是很多工程师比较头疼的问题,与EMI电磁
    发表于 05-13 10:37 1次下载

    EMI电磁干扰EMI电磁干扰的识别与解决之道

    深圳比创达EMC|EMI电磁干扰EMI电磁干扰的识别与解决之道
    的头像 发表于 04-25 11:17 712次阅读
    <b class='flag-5'>EMI</b><b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>:<b class='flag-5'>EMI</b><b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>的识别与解决之道

    EMC与EMI电磁兼容与电磁干扰的原理与影响

    深圳比创达电子EMC|EMC与EMI电磁兼容与电磁干扰的原理与影响
    的头像 发表于 04-09 10:46 796次阅读

    EMI电磁干扰):原理、影响与应对措施?

    EMI电磁干扰):原理、影响与应对措施?|深圳比创达电子EMC
    的头像 发表于 03-26 11:22 1628次阅读
    <b class='flag-5'>EMI</b>(<b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>):原理、影响与应对措施?

    EMI电磁干扰:原理、影响及解决方法详解?

    EMI电磁干扰:原理、影响及解决方法详解?|深圳比创达电子
    的头像 发表于 03-21 10:02 790次阅读
    <b class='flag-5'>EMI</b><b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>:原理、影响及解决<b class='flag-5'>方法</b>详解?

    DC-DC_升压稳压变换器设计

    DC-DC功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为隔离隔离
    发表于 01-30 11:45 6次下载

    如何抑制MEI电磁干扰传导?如何选择EMI滤波

    如何抑制MEI电磁干扰传导?如何选择EMI滤波? 抑制电磁干扰(MEI)传导是一项非常关键的任
    的头像 发表于 11-29 11:03 800次阅读