概述
以STM32CUBEMX创建STM32F103工程,同时移植在GD32F303中,同时通过GD32303C_START开发板内进行验证。
需要样片的可以加Qun申请:615061293。
硬件准备
这里准备了2块开发板进行验证,分别是GD32303C_START开发板。
样品申请
https://www.wjx.top/vm/wFGhGPF.aspx#
开发板管脚配置
在GD32303C_START中的LED管脚配置如下所示。
不同速率对应的波形
以PC3为例,在推挽输出无上下拉情况下,输出速率主要有4种,一般的低端MCU只有3种,没有Very High。 下面是ST的配置图。
在固件库中,定义如下所示。
GPIO_OSPEED_2MHZ速率
GPIO_OSPEED_10MHZ速率
GPIO_OSPEED_50MHZ速率
GPIO_OSPEED_MAX速率
可以看到,在不同速率下,端口的反应速度不一样,设置最大输出速率越大,响应越快,对应的噪声也就越大。
输出方式
在上图中,P-MOS带了一个⚪,说明是低电平导通。
上图是GPIO的示意图,有输入和输出,如果简化为输出,则如下所示。
模拟文件下载
https://download.csdn.net/download/qq_24312945/85250172
推挽输出
推挽输出的内部电路大概是下图这个样子,由一个P-MOS和一个N-MOS组合而成,同一时间只有一个管子能够进行导通。
当输出高电平时候,P-MOS导通,N-MOS截至,此时电源电流入R5。
当输出低电平时候,N-MOS导通,P-MOS截至,此时电流流入R5的为0。
线与
推挽输出高电平与电源电压基本上没有压差 高低电平的驱动能力较强,推挽输出的电流都能达到几十mA。 但是无法进行线与操作,做进行线与操作,那么电源和地就会短路,因为mos管电阻很小。 看下图可以得知,电流通过Q3的P-MOS流到Q2的N-MOS,最终回到地。
开漏输出
开漏输出又叫漏极开漏输出简化后可以看作如下的示意图。
若还是使用上面推挽的电路图,当N-MOS为低电平时候,那么他的输出就是一个高阻态。 可以看到,R5没有电流通过,电压也是接近于0,所以GPIO无法对外输出高电平。
此时需要增加一个上拉,这样的话上拉的电流就会流出去。 所以在开漏输出情况下,需要增加一个上拉才能进行输出高电平。
对于输出低电平,他和推挽输出差不多,电流通过N-MOS流到地中。
上图是没有增加上拉,但是开漏输出模式都需要增加,增加上拉之后如下图所示。 电流通过N-MOS流回地中。
输出电压
由于推挽输出在输出的时候是通过单片机内部的电压,所以他的电压是不能改变的。 但是开漏输出是通过外部上拉的电压,所以可以改变开漏输出模式下的电压大小。 下图是当上拉为5V时候,也是可以驱动出去的,这个上拉电压最大值需要看单片机的耐压。
审核编辑:汤梓红
-
GPIO
+关注
关注
16文章
1196浏览量
51897 -
固件库
+关注
关注
2文章
97浏览量
14922 -
stm32cubemx
+关注
关注
5文章
280浏览量
14746 -
gd32f303
+关注
关注
4文章
38浏览量
3674
发布评论请先 登录
相关推荐
评论