0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氟硫电解质有效提升Li||LCO低温下的循环性能

清新电源 来源:科学材料站 作者:何伟东,刘远鹏 2022-11-29 10:30 次阅读

【研究背景】

为了使电动汽车、电子设备在极端工作条件稳定运行,对于兼具低温适应性和长寿命的锂离子电池(LIBs)的开发至关重要。传统是石墨负极在低温下形成的SEI界面极不稳定,相反地,Li金属自身可作为电池的理想负极,而无需任何Li沉积载体,可以保证LiCoO2 (LCO)阴极的低温运行。但目前Li|| LCO电池常用的电解液体系很难适用于低温环境,主要问题包括Li+的高度溶剂化结构、低去溶剂化能、电解液中Li+饱和浓度较低以及SEI&CEI的界面阻抗高等。

【成果简介】

近日,哈工大何伟东教授,刘远鹏副教授等在Energy & Environmental Science上发表题为“Reconstruction of LiF-rich interphases through an anti-freezing electrolyte for ultralow-temperature LiCoO2 batteries”的研究论文。作者选用了甲酸异丁酯(IF)作为抗凝固剂,有效拓宽了电解液的液程范围,同时构建了富含LiF的SEI膜和CEI膜,有效提升了Li||LCO低温下的循环性能。

【研究亮点】

(1)采用甲酸异丁酯(IF)作为抗冻剂,设计了一种氟硫电解质,实现了低配位数、高去溶剂化能和高Li+饱和浓度的电解质;同时形成了富含LiF的SEI和CEI膜,有效促进Li+传输。

(2)该电解液极大地提升了Li || LCO电池的低温性能,在-70°C下稳定循环超过170次,可逆容量达到110 mAh/g。

【图文导读】

图1 EC+DMC (a)和45% IF (d)电解质示意图;EC+DMC (b)和45% IF (e)电解质的Li+溶剂化结构和相应的去溶剂化能;利用拓扑分析确定了EC+DMC (c)和45% IF (f)电解质的Li+迁移路径;(g)特定温度下不同电解质的Li+饱和浓度;(h)不同电解质的离子电导率;(i) 45% IF电解质与其他报道过的低温电解质的容量及相应循环数的对比。

在-70℃下,使用碳酸乙烯(EC) +碳酸二甲酯(DMC)和45%IF电解质的电池运行示意图如图1a和1d所示,这表明调整EC+DMC和45% IF电解质界面相的电化学性能的意义和作用。图1b-c和e-f显示了通过拓扑分析确定的Li+溶剂化结构、对应的去溶剂化能和迁移路径。45% IF电解质的脱溶能为-27.97 eV,远高于EC+DMC电解质的-50.27 eV,如图1b和1e所示。由于EC和DMC溶剂凝固点较高,Li+在-20℃的传输受到限制。相反,IF体系中Li+的运动轨迹范围大,如图1f所示,有完全连通的迁移通道,使得Li+在-20°C的45% IF电解质中具有较大的扩散系数(9.35×10-20 m2 s-1)和离子电导率(4.856 mS cm-1)。

基于此,作者提出了Li+的饱和浓度来分析Li+的溶剂化程度,如图1g所示。在-70℃时,加入防冻剂IF的45% IF电解质溶剂化程度低,Li+饱和浓度高,保证了Li+的高效迁移(1.40×10-10 mol/s)。EC+DMC电解质具有较强的溶剂化结构和较高的凝固点,极大地阻碍了Li+的传输,导致Li+饱和浓度极低(4.99×10-16 mol/s)。如图1h显示了45% IF、FEC+DMS和EC+DMC电解质的离子电导率。

图1i总结了文献中不同低温电解质的详细对比,在-70 ℃条件下,45% IF电解质的容量和循环次数综合性能最好。

图2 Li‖LCO电池(2.70-4.45 V)的电化学性能。(a) 60-70°C的倍率性能;(b)在-20℃条件下,不同电解质的电池在1/3 C时的倍率和(c)循环性能;(d)在1/15 C和-70°C条件下,使用45% IF电解质时电池的循环性能;(e) EC+DMC和45% IF电解质在1/3 C和-20℃条件下,LCO负载约10 mg cm-2时,电池的循环性能;(f)在1/15C和-70℃条件下,当LCO负载为~10 mg cm-2时,45% IF电解质对电池的循环性能;(g)低温放电曲线。 电池在不同温度下充电,在-70°C放电时使用45% IF电解质;(h)在-70°C条件下,使用45% IF电解质的Li‖LCO电池供电的电动机的数码照片;(i)本工作与最近有关低温电池的性能进行比较。

如图2a所示,45 % IF电解质的工作温度范围为60℃~-70℃,较EC+DMC电解质(60℃~ -20℃)更大。图2b显示了与对照组相比,使用45 % IF电解质的电池倍率性能更好。如图2c所示,采用45 % IF电解质的Li || LCO电池在1/3 C和-20℃条件下,在500个循环中,其容量最高为156 mAh g-1,容量保持率为93.5 %。在图2d中,即使在-70℃,电池也可以在170次循环后提供110mAh g-1。在-20℃时,使用45% IF电解质的电池在1/3C时的初始放电容量为113 mAh g-1,平均CE为99.59%。而EC+DMC电解质的电池在25个循环内容量迅速衰减,如图2e所示。

如图2f所示,在1/15C和-50℃、-60℃和-70℃条件下,使用45% IF电解质的电池的容量分别为146 mAh g-1、124 mAh g-1和109.7 mAh g-1。在图2g中,室温充电-70℃放电,45% IF电解质的电池初始CE为88%,在-70℃充电放电时为69%。如图2h所示,在-70℃条件下,由Li || LCO电池和45% IF电解质供电的电风扇可持续工作。图2i和总结了文献中不同低温电解质的详细对比。

图3 Li+在EC+DMC (a)和45% IF (e)电解质中的沉积行为的示意图;EC+DMC (b-d)和45% IF (f-h)电解质的俯视图、剖面图和SEM图像。 EC+DMC (i)和45% IF (k)电解质形貌演变的有限元模拟;(j, l)用45% IF和EC+DMC电解质制备的对称Li‖Li电池在电流密度为0.5 mA cm-2、固定容量为0.5 mA h cm-2时的循环性能;在电流密度为0.5 mA cm-2的条件下,在30、60、90和120 min的EC+DMC (m)和45% IF (n)电解质中的锂沉积的原位光学图像。

图3a和图3e描述了在-20℃条件下,Li+在EC+DMC和45% IF电解质中的沉积行为。在EC+DMC电解液中,Li金属表面出现大量分布不均的苔状针状枝晶,如图3b所示。相比之下,45% IF电解液的Li金属表面呈椭圆形,无枝晶密集,界面结构平坦,如图3f。从图3d和图3h可以看出,EC+DMC电解液的Li负极表面在6 μm~8 μm范围内波动较大,而45% IF电解液的负极表面深度约为4 μm,说明在-20℃时,锂离子沉积较为稳定,界面较为平滑。

采用相场模拟对Li金属/电解质界面的电场分布进行了数值研究。如图3i和3k所示。Li||Li对称电池在-20 ℃下如图3j所示,使用45% IF电解液的Li||Li电池在4000小时内循环稳定,而使用EC+DMC电解液的Li||Li电池在500小时后失效,如图3l所示。组装Li||Cu电池,在-20℃下通过原位光学显微镜研究不同电解质在Cu表面的沉积剖面形貌,不同时间记录的图像如图3m, n所示。

图4 在-20℃下,从MD模拟和拉曼光谱(c, f)中获得45% IF (a-c)和EC+DMC (d-f)电解质的快照(a, d)和RDF (b, e);(g) Li+与不同电解质组分之间的CNs;(h)加入45% IF电解质的LCO电池首次充放电时的原位拉曼光谱;(i-k)第50个循环后,45% IF电解液残留的7Li, 13C和19F液相NMR谱。

作者用计算模拟、拉曼光谱和傅里叶变换红外光谱(FT-IR)对溶剂化结构进行了研究。分子动力学(MD)模拟和RDF数据也分别用于分析EC+DMC和45% IF电解质中的SSIP和CIP结构。图4g为Li+与不同电解质组分之间的CNs。图4h给出了充放电过程,对应的时间分辨拉曼图像为300 cm-1-500 cm-1。

利用核磁共振(NMR)对反应后的商用电解液和45% IF电解液残留物的组成进行了研究,结果如图4i和4k所示,这与F和Li的XPS分析结果一致。在-20℃回收的电解液中发现LiF成分,说明45% IF的电解液在充放电反应过程中形成了大量的LiF,构成了稳定的富含LiF的SEI和CEI层。

【总结和展望】

本工作通过在LiDFOB/FEC/DMS氟硫电解质体系中引入IF抗冻剂,研制了一种具有优良物理化学性能的低溶剂化(CN = 0.07)、高去溶剂化能(-27.97 eV)和Li+饱和浓度(1.40×10-10 mol/s)的电解质。该电解质形成了稳定的富含LiF的SEI(10.48%)和CEI(17.91%)层,具有较大的Li+电导率和扩散系数以及较宽的温度窗口(-70℃~ 60℃)。原位光学显微镜结合MD模拟和相场模拟表明,新型电解质使锂离子在锂金属阳极的沉积均匀,有助于在-20℃条件下形成长寿命可逆对称锂||锂电池(》4300小时)。此外,在-70℃条件下,经过170次循环后,电池的放电容量达到了空前的110mAh/g。该工作为钴酸锂电池体系低温下的应用提供了宝贵经验和借鉴。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3238

    浏览量

    77686
  • 电池
    +关注

    关注

    84

    文章

    10563

    浏览量

    129487

原文标题:哈工大何伟东、刘远鹏EES:零下70℃!富LiF界面重构助力超低温锂电池

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    半互穿网络电解质用于高电压锂金属电池

    研究背景 基于高镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在高电压充电时,高镍正极在高度去锂化状态,Ni4+的表面反应性显著增强,这会催化正极与电解质界面之间的有害副反应
    的头像 发表于 12-23 09:38 83次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于高电压锂金属电池

    钠电新突破:实现宽温长寿命电池的电解液革新

    是SIBs电解质的主要成分,很大程度上决定了电解质的电化学特性。目前常用的钠盐主要包括六磷酸钠(NaPF6)、高氯酸钠(NaClO4)、双(三甲磺酰)亚胺钠(NaTFSI)和双(
    的头像 发表于 11-28 09:51 308次阅读
    钠电新突破:实现宽温长寿命电池的<b class='flag-5'>电解</b>液革新

    一种创新的超薄固体聚合物电解质

    传统液态电解质在锂离子电池中的应用,尽管广泛,但在极端环境条件可能不可避免地面临泄漏、燃烧乃至爆炸的风险,这些安全隐患显著制约了其更为广泛的部署。
    的头像 发表于 11-01 10:31 380次阅读
    一种创新的超薄固体聚合物<b class='flag-5'>电解质</b>

    固态电池中复合锂阳极上固体电解质界面的调控

    采用固体聚合物电解质(SPE)的固态锂金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 385次阅读
    固态电池中复合锂阳极上固体<b class='flag-5'>电解质</b>界面的调控

    无极电容器有电解质吗,无极电容器电解质怎么测

    无极电容器通常存在电解质电解质在无极电容器中起着重要作用,它可以增加电容器的电容量和稳定性。然而,电解质也可能带来一些问题,如漏电和寿命问题。
    的头像 发表于 10-01 16:45 370次阅读

    高压电解电容虚标原因,高压电解电容虚标怎么判断

    高压电解电容内部使用的电解液通常是有机液体电解质。由于电解质的化学性质,电容器内部的电解液可能会对金属极板进行腐蚀,导致金属极板损伤。这种损
    的头像 发表于 06-08 17:15 1702次阅读

    具有密集交联结构的明胶基水凝胶电解质(ODGelMA)

    目前,开发一种能够成功实现兼具机械强度、离子电导率和界面适应性的综合水凝胶电解质基质仍然具有挑战性。
    的头像 发表于 05-22 09:17 726次阅读
    具有密集交联结构的明胶基水凝胶<b class='flag-5'>电解质</b>(ODGelMA)

    氧化物布局格局一览 氧化物电解质何以撑起全固态?

    今年以来,各式各样的半固态、全固态电池开始愈发频繁且高调地现身,而背后均有氧化物电解质的身影。
    的头像 发表于 05-16 17:41 1059次阅读

    铌酸锂调控固态电解质电场结构促进锂离子高效传输!

    聚合物基固态电解质得益于其易加工性,最有希望应用于下一代固态锂金属电池。
    的头像 发表于 05-09 10:37 751次阅读
    铌酸锂调控固态<b class='flag-5'>电解质</b>电场结构促进锂离子高效传输!

    电解质电极信号采集控制板

    1、产品介绍: 本产品是测量分析人体的血清或者尿液中K,NA CL CA PH LI CL CO2 等离子的浓度含量。 2、应用场景: 电解质分析仪。 3、产品概述: 主控芯片
    的头像 发表于 04-11 09:07 410次阅读
    <b class='flag-5'>电解质</b>电极信号采集控制板

    请问聚合物电解质是如何进行离子传导的呢?

    在目前的聚合物电解质体系中,高分子聚合物在室温都有明显的结晶性,这也是室温固态聚合物电解质的电导率远远低于液态电解质的原因。
    的头像 发表于 03-15 14:11 1199次阅读
    请问聚合物<b class='flag-5'>电解质</b>是如何进行离子传导的呢?

    不同类型的电池的电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池的电解质由液体,胶凝和干燥形式的可溶性盐,酸或其他碱组成。电解质也来自
    的头像 发表于 02-27 17:42 1544次阅读

    新型固体电解质材料可提高电池安全性和能量容量

    利物浦大学的研究人员公布了一种新型固体电解质材料,这种材料能够以与液体电解质相同的速度传导锂离子,这是一项可能重塑电池技术格局的重大突破。
    的头像 发表于 02-19 16:16 884次阅读

    固态电解质离子传输机理解析

    固态电解质中离子的迁移通常是通过离子扩散的方式实现的。离子扩散是指离子从一个位置移动到另一个位置的过程,使得电荷在材料中传输。
    发表于 01-19 15:12 2718次阅读
    固态<b class='flag-5'>电解质</b>离子传输机理解析

    关于固态电解质的基础知识

    固态电解质在室温条件要求具有良好的离子电导率,目前所采用的简单有效的方法是元素替换和元素掺杂。
    的头像 发表于 01-19 14:58 1.9w次阅读
    关于固态<b class='flag-5'>电解质</b>的基础知识