0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

OneFlow 将 Stable Diffusion的推理性能推向了一个全新的SOTA

人工智能与大数据技术 来源:机器之心 作者:机器之心 2022-11-30 10:03 次阅读

OneFlow 将 Stable Diffusion 的推理性能推向了一个全新的 SOTA。

第一辆汽车诞生之初,时速只有 16 公里,甚至不如马车跑得快,很长一段时间,汽车尴尬地像一种“很酷的玩具”。人工智能作图的出现也是如此。

AI 作图一开始的 “风格化” 本身就为 “玩” 而生,大家普遍兴致勃勃地尝试头像生成、磨皮,但很快就失去兴趣。直到扩散模型的降临,才给 AI 作图带来质变,让人们看到了 “AI 转成生产力” 的曙光:画家、设计师不用绞尽脑汁思考色彩、构图,只要告诉 Diffusion 模型想要什么,就能言出法随般地生成高质量图片。

然而,与汽车一样,如果扩散模型生成图片时“马力不足”,那就没法摆脱玩具的标签,成为人类手中真正的生产工具。

起初,AI 作图需要几天,再缩减到几十分钟,再到几分钟,出图时间在不断加速,问题是,究竟快到什么程度,才会在专业的美术从业者甚至普通大众之间普及开来?

显然,现在还无法给出具体答案。即便如此,可以确定的是 AI 作图在技术和速度上的突破,很可能已经接近甚至超过阈值,因为这一次,OneFlow 带来了字面意义上 “一秒出图” 的 Stable Diffusion 模型。

OneFlow Stable Diffusion 使用地址:https://github.com/Oneflow-Inc/diffusers/wiki/How-to-Run-OneFlow-Stable-Diffusion

OneFlow 地址:https://github.com/Oneflow-Inc/oneflow/

比快更快,OneFlow 一马当先

下面的图表分别展示了在 A100 (PCIe 40GB / SXM 80GB)、RTX 2080 和 T4 不同类型的 GPU 硬件上,分别使用 PyTorch, TensorRT, AITemplate 和 OneFlow 四种深度学习框架或者编译器,对 Stable Diffusion 进行推理时的性能表现。

659d18c6-7050-11ed-8abf-dac502259ad0.png

65b0bbce-7050-11ed-8abf-dac502259ad0.png

对于 A100 显卡,无论是 PCIe 40GB 的配置还是 SXM 80GB 的配置,OneFlow 的性能可以在目前的最优性能之上继续提升 15% 以上。

特别是在 SXM 80GB A100 上,OneFlow 首次让 Stable Diffusion 的推理速度达到了 50it/s 以上,首次把生成一张图片需要采样 50 轮的时间降到 1 秒以内,是当之无愧的性能之王。

65bb3a0e-7050-11ed-8abf-dac502259ad0.png

在 T4 推理卡上,由于 AITemplate 暂不支持 Stable Diffsuion,相比于目前 SOTA 性能的 TensorRT,OneFlow 的性能是它的 1.5 倍。

65c97db2-7050-11ed-8abf-dac502259ad0.png

而在 RTX2080 上,TensorRT 在编译 Stable Diffsuion 时会 OOM ,相比于目前 SOTA 性能的 PyTorch,OneFlow 的性能是它的 2.25 倍。

综上,在各种硬件以及更多框架的对比中,OneFlow 都将 Stable Diffusion 的推理性能推向了一个全新的 SOTA。

生成图片展示

利用 OneFlow 版的 Stable Diffusion,你可以把天马行空的想法很快转化成艺术图片,譬如:

以假乱真的阳光、沙滩和椰树:

仓鼠救火员、长兔耳朵的狗子:

在火星上吃火锅:

未来异世界 AI:

集齐 OneFlow 七龙珠:

图片均基于 OneFlow 版 Stable Diffusion 生成。如果你一时没有好的 idea,可以在 lexica 上参考一下广大网友的创意,不仅有生成图片还提供了对应的描述文字。

无缝兼容 PyTorch 生态,实现一键模型迁移

想体验 OneFlow Stable Diffusion?只需要修改三行代码,你就可以将 HuggingFace 中的 PyTorch Stable Diffusion 模型改为 OneFlow 模型,分别是将 import torch 改为 import oneflow as torch 和将 StableDiffusionPipeline 改为 OneFlowStableDiffusionPipeline:

669e52e4-7050-11ed-8abf-dac502259ad0.png

之所以能这么轻松迁移模型,是因为 OneFlow Stable Diffusion 有两个出色的特性:

OneFlowStableDiffusionPipeline.from_pretrained 能够直接使用 PyTorch 权重。

OneFlow 本身的 API 也是和 PyTorch 对齐的,因此 import oneflow as torch 之后,torch.autocast、torch.float16 等表达式完全不需要修改。

上述特性使得 OneFlow 兼容了 PyTorch 的生态,这不仅在 OneFlow 对 Stable Diffusion 的迁移中发挥了作用,也大大加速了 OneFlow 用户迁移其它许多模型,比如在和 torchvision 对标的 flowvision 中,许多模型只需通过在 torchvision 模型文件中加入 import oneflow as torch 即可得到。

此外,OneFlow 还提供全局 “mock torch” 功能,在命令行运行 eval $(oneflow-mock-torch) 就可以让接下来运行的所有 Python 脚本里的 import torch 都自动指向 oneflow。

使用 OneFlow 运行 Stable Diffusion

在 docker 中使用 OneFlow 运行 StableDiffusion 模型生成图片:

docker run --rm -it --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 -v ${HF_HOME}:${HF_HOME} -v ${PWD}:${PWD} -w ${PWD} -e HF_HOME=${HF_HOME} -e HUGGING_FACE_HUB_TOKEN=${HUGGING_FACE_HUB_TOKEN} oneflowinc/oneflow-sd:cu112 python3 /demos/oneflow-t2i.py # --prompt "a photo of an astronaut riding a horse on mars"

更详尽的使用方法请参考:https://github.com/Oneflow-Inc/diffusers/wiki/How-to-Run-OneFlow-Stable-Diffusion

后续工作

后续 OneFlow 团队将积极推动 OneFlow 的 diffusers(https://github.com/Oneflow-Inc/diffusers.git) 和 transformers(https://github.com/Oneflow-Inc/transformers.git) 的 fork 仓库内容合并到 huggingface 上游的的对应仓库。这也是 OneFlow 首次以 transformers/diffusers 的后端的形式开发模型,欢迎各位开发者朋友在 GitHub 上反馈意见。

值得一提的是,在优化和加速 Stable Diffusion 模型的过程中使用了 OneFlow 自研编译器,不仅让 PyTorch 前端搭建的 Stable Diffusion 在 NVIDIA GPU 上跑得更快,而且也可以让这样的模型在国产 AI 芯片和 GPU 上跑得更快,这些将在之后的文章中揭秘技术细节。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30072

    浏览量

    268337
  • 人工智能
    +关注

    关注

    1791

    文章

    46820

    浏览量

    237460
  • 开源
    +关注

    关注

    3

    文章

    3243

    浏览量

    42378

原文标题:1秒出图,这个开源项目太牛了!

文章出处:【微信号:TheBigData1024,微信公众号:人工智能与大数据技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    澎峰科技高性能大模型推理引擎PerfXLM解析

    自ChatGPT问世以来,大模型遍地开花,承载大模型应用的高性能推理框架也不断推出,大有百家争鸣之势。在这种情况下,澎峰科技作为全球领先的智能计算服务提供商,在2023年11月25日发布针对大语言
    的头像 发表于 09-29 10:14 377次阅读
    澎峰科技高<b class='flag-5'>性能</b>大模型<b class='flag-5'>推理</b>引擎PerfXLM解析

    开箱即用,AISBench测试展示英特尔至强处理器的卓越推理性能

    近期,第五代英特尔®至强®可扩展处理器通过了中国电子技术标准化研究院组织的人工智能服务器系统性能测试(AISBench)。英特尔成为首批通过AISBench大语言模型(LLM)推理性能测试的企业
    的头像 发表于 09-06 15:33 276次阅读
    开箱即用,AISBench测试展示英特尔至强处理器的卓越<b class='flag-5'>推理性能</b>

    魔搭社区借助NVIDIA TensorRT-LLM提升LLM推理效率

    “魔搭社区是中国最具影响力的模型开源社区,致力给开发者提供模型即服务的体验。魔搭社区利用NVIDIA TensorRT-LLM,大大提高了大语言模型的推理性能,方便了模型应用部署,提高了大模型产业应用效率,更大规模地释放大模型的应用价值。”
    的头像 发表于 08-23 15:48 374次阅读

    NB81是否支持OneNet SOTA功能?应该如何激活SOTA

    NB81是否支持OneNet SOTA功能? 可以支持,应该如何激活SOTA
    发表于 06-04 06:14

    旋变位置不变的情况下,当使能SOTA功能与关闭SOTA功能时,APP中DSADC采样得到的旋变sin和cos两者值不样,为什么?

    旋变位置不变的情况下,当使能SOTA功能与关闭SOTA功能时,APP中DSADC采样得到的旋变sin和cos两者值不样,用示波器采的输入到MCU端的差分电压是样的,难道是
    发表于 05-17 08:13

    自然语言处理应用LLM推理优化综述

    当前,业界在传统优化技术引入 LLM 推理的同时,同时也在探索从大模型自回归解码特点出发,通过调整推理过程和引入新的模型结构来进步提升推理性能
    发表于 04-10 11:48 549次阅读
    自然语言处理应用LLM<b class='flag-5'>推理</b>优化综述

    UL Procyon AI 发布图像生成基准测试,基于Stable Diffusion

    UL去年发布的首个Windows版Procyon AI推理基准测试,以计算机视觉工作负载评估AI推理性能。新推出的图像生成测试提供统、精确且易于理解的工作负载,用以保证各支持硬件间
    的头像 发表于 03-25 16:16 826次阅读

    瑞萨电子宣布推出款面向高性能机器人应用的新产品—RZ/V2H

    具有10TOPS/W能效的新代AI加速器无需冷却风扇即可提供高达80TOPS的AI推理性能
    的头像 发表于 03-01 10:41 791次阅读
    瑞萨电子宣布推出<b class='flag-5'>一</b>款面向高<b class='flag-5'>性能</b>机器人应用的新产品—RZ/V2H

    Torch TensorRT是优化PyTorch模型推理性能的工具

    那么,什么是Torch TensorRT呢?Torch是我们大家聚在起的原因,它是端到端的机器学习框架。而TensorRT则是NVIDIA的高性能深度学习
    的头像 发表于 01-09 16:41 1505次阅读
    Torch TensorRT是<b class='flag-5'>一</b><b class='flag-5'>个</b>优化PyTorch模型<b class='flag-5'>推理性能</b>的工具

    OneFlow Softmax算子源码解读之WarpSoftmax

    写在前面:近来笔者偶然间接触深度学习框架 OneFlow,所以这段时间主要在阅读 OneFlow 框架的 cuda 源码。官方源码基于
    的头像 发表于 01-08 09:24 741次阅读
    <b class='flag-5'>OneFlow</b> Softmax算子源码解读之WarpSoftmax

    种新的分割模型Stable-SAM

    SAM、HQ-SAM、Stable-SAM在提供次优提示时的性能比较,Stable-SAM明显优于其他算法。这里也推荐工坊推出的新课程《如何深度学习模型部署到实际工程中?
    的头像 发表于 12-29 14:35 616次阅读
    <b class='flag-5'>一</b>种新的分割模型<b class='flag-5'>Stable</b>-SAM

    英特尔发布第五代至强可扩展处理器:性能和能效大幅提升,AI 加速

    此外,至强可扩展处理器被誉为行业首屈指的内置AI加速器数据中心处理器,全新第五代产品更能优化参数量高达200亿的大型语言模型,使其推理性能提升42%。眼下,它还是唯历次刷新MLPe
    的头像 发表于 12-15 11:02 808次阅读

    免费开源图像修复工具lama-cleaner介绍

    Lama Cleaner 是由 SOTA AI 模型提供支持的免费开源图像修复工具。可以从图片中移除任何不需要的物体、缺陷和人,或者擦除并替换(powered by stable diffusion)图片上的任何东西。
    的头像 发表于 12-04 10:23 2787次阅读
    免费开源图像修复工具lama-cleaner介绍

    用上这个工具包,大模型推理性能加速达40倍

    作者: 英特尔公司 沈海豪、罗屿、孟恒宇、董波、林俊 编者按: 只需不到9行代码, 就能在CPU上实现出色的LLM推理性能。 英特尔  Extension for Transformer 创新
    的头像 发表于 12-01 20:40 1094次阅读
    用上这个工具包,大模型<b class='flag-5'>推理性能</b>加速达40倍

    Google的第五代TPU,推理性能提升2.5倍

    指标的规模有巨大改进,我们现在可以在秒内实时处理 1000 秒的内部语音到文本和情绪预测模型,性能提高了 6 倍。”
    发表于 11-24 10:27 578次阅读
    Google的第五代TPU,<b class='flag-5'>推理性能</b>提升2.5倍