0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

网页爬虫及其用到的算法和数据结构

算法与数据结构 来源:快课网 作者:Jay13 2022-12-02 11:30 次阅读

网络爬虫,是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。网络爬虫是搜索引擎系统中十分重要的组成部分,它负责从互 联网中搜集网页,采集信息,这些网页信息用于建立索引从而为搜索 引擎提供支持,它决定着整个引擎系统的内容是否丰富,信息是否即 时,因此其性能的优劣直接影响着搜索引擎的效果。

网络爬虫程序的优劣,很大程度上反映了一个搜索引擎的好差。不信,你可以随便拿一个网站去查询一下各家搜索对它的网页收录情况,爬虫强大程度跟搜索引擎好坏基本成正比。

1.世界上最简单的爬虫——三行情诗

我们先来看一个最简单的最简单的爬虫,用python写成,只需要三行。

import requests
url="http://www.cricode.com"
r=requests.get(url)

上面这三行爬虫程序,就如下面这三行情诗一般,很干脆利落。

是好男人,

就应该在和女友吵架时,

抱着必输的心态。

2.一个正常的爬虫程序

上面那个最简单的爬虫,是一个不完整的残疾的爬虫。因为爬虫程序通常需要做的事情如下

1)给定的种子URLs,爬虫程序将所有种子URL页面爬取下来

2)爬虫程序解析爬取到的URL页面中的链接,将这些链接放入待爬取URL集合中

3)重复1、2步,直到达到指定条件才结束爬取

因此,一个完整的爬虫大概是这样子的:

import requests                       #用来爬取网页
from bs4 import BeautifulSoup         #用来解析网页
seds = ["http://www.hao123.com",      #我们的种子
              "http://www.csdn.net",
              "http://www.cricode.com"]
sum = 0                               #我们设定终止条件为:爬取到100000个页面时,就不玩了
 
while sum < 10000 :
    if sum < len(seds):
         r = requests.get(seds[sum])
         sum = sum + 1
         do_save_action(r)
         soup = BeautifulSoup(r.content)               
         urls = soup.find_all("href",.....)                     //解析网页
         for url in urls:
              seds.append(url)
 
    else:
         break

3.现在来找茬

上面那个完整的爬虫,不足20行代码,相信你能找出20个茬来。因为它的缺点实在是太多。下面一一列举它的N宗罪:

1)我们的任务是爬取1万个网页,按上面这个程序,一个人在默默的爬取,假设爬起一个网页3秒钟,那么,爬一万个网页需要3万秒钟。MGD,我们应当考虑开启多个线程(池)去一起爬取,或者用分布式架构去并发的爬取网页。

2)种子URL和后续解析到的URL都放在一个列表里,我们应该设计一个更合理的数据结构来存放这些待爬取的URL才是,比如队列或者优先队列。

3)对各个网站的url,我们一视同仁,事实上,我们应当区别对待。大站好站优先原则应当予以考虑。

4)每次发起请求,我们都是根据url发起请求,而这个过程中会牵涉到DNS解析,将url转换成ip地址。一个网站通常由成千上万的URL,因此,我们可以考虑将这些网站域名的IP地址进行缓存,避免每次都发起DNS请求,费时费力。

5)解析到网页中的urls后,我们没有做任何去重处理,全部放入待爬取的列表中。事实上,可能有很多链接是重复的,我们做了很多重复劳动。

6)…..

4.找了这么多茬后,很有成就感,真正的问题来了,学挖掘机到底哪家强?

现在我们就来一一讨论上面找茬找出的若干问题的解决方案。

1)并行爬起问题

我们可以有多重方法去实现并行。

多线程或者线程池方式,一个爬虫程序内部开启多个线程。同一台机器开启多个爬虫程序,如此,我们就有N多爬取线程在同时工作。能大大减少时间。

此外,当我们要爬取的任务特别多时,一台机器、一个网点肯定是不够的,我们必须考虑分布式爬虫。常见的分布式架构有:主从(Master——Slave)架构、点对点(Peer to Peer)架构,混合架构等。

说道分布式架构,那我们需要考虑的问题就有很多,我们需要分派任务,各个爬虫之间需要通信合作,共同完成任务,不要重复爬取相同的网页。分派任务我们要做到公平公正,就需要考虑如何进行负载均衡。负载均衡,我们第一个想到的就是Hash,比如根据网站域名进行hash。

负载均衡分派完任务之后,千万不要以为万事大吉了,万一哪台机器挂了呢?原先指派给挂掉的哪台机器的任务指派给谁?又或者哪天要增加几台机器,任务有该如何进行重新分配呢?

一个比较好的解决方案是用一致性Hash算法

2)待爬取网页队列

如何对待待抓取队列,跟操作系统如何调度进程是类似的场景。

不同网站,重要程度不同,因此,可以设计一个优先级队列来存放待爬起的网页链接。如此一来,每次抓取时,我们都优先爬取重要的网页。

当然,你也可以效仿操作系统的进程调度策略之多级反馈队列调度算法。

3)DNS缓存

为了避免每次都发起DNS查询,我们可以将DNS进行缓存。DNS缓存当然是设计一个hash表来存储已有的域名及其IP。

4)网页去重

说到网页去重,第一个想到的是垃圾邮件过滤。垃圾邮件过滤一个经典的解决方案是Bloom Filter(布隆过滤器)。布隆过滤器原理简单来说就是:建立一个大的位数组,然后用多个Hash函数对同一个url进行hash得到多个数字,然后将位数组中这些数字对应的位置为1。下次再来一个url时,同样是用多个Hash函数进行hash,得到多个数字,我们只需要判断位数组中这些数字对应的为是全为1,如果全为1,那么说明这个url已经出现过。如此,便完成了url去重的问题。当然,这种方法会有误差,只要误差在我们的容忍范围之类,比如1万个网页,我只爬取到了9999个,剩下那一个网页,who cares!

5)数据存储的问题

数据存储同样是个很有技术含量的问题。用关系数据库存取还是用NoSQL,抑或是自己设计特定的文件格式进行存储,都大有文章可做。

6)进程间通信

分布式爬虫,就必然离不开进程间的通信。我们可以以规定的数据格式进行数据交互,完成进程间通信。

7)……

废话说了那么多,真正的问题来了,问题不是学挖掘机到底哪家强?而是如何实现上面这些东西!:)

实现的过程中,你会发现,我们要考虑的问题远远不止上面这些。纸上得来终觉浅,觉知此事要躬行!

审核编辑 :李倩
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4587

    浏览量

    92477
  • 数据结构
    +关注

    关注

    3

    文章

    569

    浏览量

    40070
  • 爬虫
    +关注

    关注

    0

    文章

    82

    浏览量

    6810

原文标题:网页爬虫及其用到的算法和数据结构

文章出处:【微信号:TheAlgorithm,微信公众号:算法与数据结构】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式常用数据结构有哪些

    在嵌入式编程中,数据结构的选择和使用对于程序的性能、内存管理以及开发效率都具有重要影响。嵌入式系统由于资源受限(如处理器速度、内存大小等),因此对数据结构的选择和使用尤为关键。以下是嵌入式编程中常用的几种数据结构,结合具体特点和
    的头像 发表于 09-02 15:25 355次阅读

    网络爬虫,Python和数据分析

    电子发烧友网站提供《网络爬虫,Python和数据分析.pdf》资料免费下载
    发表于 07-13 09:27 1次下载

    探索编程世界的七大数据结构

    结构就像是一颗倒挂的小树,有根、有枝、有叶。它是一种非线性的数据结构,以层级的方式存储数据,顶部是根节点,底部是叶节点。
    的头像 发表于 04-16 12:04 336次阅读

    矢量与栅格数据结构各有什么特征

    矢量数据结构和栅格数据结构是地理信息系统(GIS)中最常用的两种数据结构。它们在存储和表示地理要素上有着不同的方法和特征。在接下来的文章中,我们将详细介绍这两种数据结构并比较它们的特点
    的头像 发表于 02-25 15:06 2213次阅读

    区块链是什么样的数据结构组织

    区块链是一种特殊的数据结构,它以分布式、去中心化的方式组织和存储数据。区块链的核心原理是将数据分布在网络的各个节点上,通过密码学算法保证数据
    的头像 发表于 01-11 10:57 1809次阅读

    C语言数据结构之跳表详解

    大家好,今天分享一篇C语言数据结构相关的文章--跳表。
    的头像 发表于 12-29 09:32 779次阅读
    C语言<b class='flag-5'>数据结构</b>之跳表详解

    redis数据结构的底层实现

    Redis是一种内存键值数据库,常用于缓存、消息队列、实时数据分析等场景。它的高性能得益于其精心设计的数据结构和底层实现。本文将详细介绍Redis常用的数据结构和它们的底层实现。 Re
    的头像 发表于 12-05 10:14 570次阅读

    爬虫的基本工作原理 用Scrapy实现一个简单的爬虫

    数以万亿的网页通过链接构成了互联网,爬虫的工作就是从这数以万亿的网页中爬取需要的网页,从网页中采集内容并形成
    的头像 发表于 12-03 11:45 1483次阅读
    <b class='flag-5'>爬虫</b>的基本工作原理 用Scrapy实现一个简单的<b class='flag-5'>爬虫</b>

    不同数据结构的定义代码

    数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
    的头像 发表于 11-29 14:13 606次阅读

    redis的五种数据类型底层数据结构

    Redis是一种内存数据存储系统,支持多种数据结构。这些数据结构不仅可以满足常见的存储需求,还能够通过其底层数据结构提供高效的操作和查询。以下是Redis中常用的五种
    的头像 发表于 11-16 11:18 667次阅读

    如何看待Python爬虫的合法性?

    Python爬虫是一种自动化程序,可以从互联网上获取信息并提取数据。通过模拟网页浏览器的行为,爬虫可以访问网页、抓取
    的头像 发表于 11-14 10:35 550次阅读

    定时器的实现数据结构选择

    在后端的开发中,定时器有很广泛的应用。 比如: 心跳检测 倒计时 游戏开发的技能冷却 redis的键值的有效期等等,都会使用到定时器。 定时器的实现数据结构选择 红黑树 对于增删查,时间复杂度为O
    的头像 发表于 11-13 14:22 485次阅读
    定时器的实现<b class='flag-5'>数据结构</b>选择

    ringbuffer数据结构介绍

    最近在研究srsLTE的代码,其中就发现一个有意思的数据结构------ringbuffer。 虽然,这是一个很基本的数据结构,但时,它在LTE这种通信协议栈系统中却大行其道,也是很容易被协议
    的头像 发表于 11-13 10:44 1500次阅读
    ringbuffer<b class='flag-5'>数据结构</b>介绍

    epoll的基础数据结构

    一、epoll的基础数据结构 在开始研究源代码之前,我们先看一下 epoll 中使用的数据结构,分别是 eventpoll、epitem 和 eppoll_entry。 1、eventpoll 我们
    的头像 发表于 11-10 10:20 747次阅读
    epoll的基础<b class='flag-5'>数据结构</b>

    Linux内核中使用的数据结构

    Linux内核代码中广泛使用了数据结构算法,其中最常用的两个是链表和红黑树。 链表 Linux内核代码大量使用了链表这种数据结构。链表是在解决数组不能动态扩展这个缺陷而产生的一种数据结构
    的头像 发表于 11-09 14:24 440次阅读
    Linux内核中使用的<b class='flag-5'>数据结构</b>