0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

网页爬虫及其用到的算法和数据结构

算法与数据结构 来源:快课网 作者:Jay13 2022-12-02 11:30 次阅读

网络爬虫,是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。网络爬虫是搜索引擎系统中十分重要的组成部分,它负责从互 联网中搜集网页,采集信息,这些网页信息用于建立索引从而为搜索 引擎提供支持,它决定着整个引擎系统的内容是否丰富,信息是否即 时,因此其性能的优劣直接影响着搜索引擎的效果。

网络爬虫程序的优劣,很大程度上反映了一个搜索引擎的好差。不信,你可以随便拿一个网站去查询一下各家搜索对它的网页收录情况,爬虫强大程度跟搜索引擎好坏基本成正比。

1.世界上最简单的爬虫——三行情诗

我们先来看一个最简单的最简单的爬虫,用python写成,只需要三行。

import requests
url="http://www.cricode.com"
r=requests.get(url)

上面这三行爬虫程序,就如下面这三行情诗一般,很干脆利落。

是好男人,

就应该在和女友吵架时,

抱着必输的心态。

2.一个正常的爬虫程序

上面那个最简单的爬虫,是一个不完整的残疾的爬虫。因为爬虫程序通常需要做的事情如下

1)给定的种子URLs,爬虫程序将所有种子URL页面爬取下来

2)爬虫程序解析爬取到的URL页面中的链接,将这些链接放入待爬取URL集合中

3)重复1、2步,直到达到指定条件才结束爬取

因此,一个完整的爬虫大概是这样子的:

import requests                       #用来爬取网页
from bs4 import BeautifulSoup         #用来解析网页
seds = ["http://www.hao123.com",      #我们的种子
              "http://www.csdn.net",
              "http://www.cricode.com"]
sum = 0                               #我们设定终止条件为:爬取到100000个页面时,就不玩了
 
while sum < 10000 :
    if sum < len(seds):
         r = requests.get(seds[sum])
         sum = sum + 1
         do_save_action(r)
         soup = BeautifulSoup(r.content)               
         urls = soup.find_all("href",.....)                     //解析网页
         for url in urls:
              seds.append(url)
 
    else:
         break

3.现在来找茬

上面那个完整的爬虫,不足20行代码,相信你能找出20个茬来。因为它的缺点实在是太多。下面一一列举它的N宗罪:

1)我们的任务是爬取1万个网页,按上面这个程序,一个人在默默的爬取,假设爬起一个网页3秒钟,那么,爬一万个网页需要3万秒钟。MGD,我们应当考虑开启多个线程(池)去一起爬取,或者用分布式架构去并发的爬取网页。

2)种子URL和后续解析到的URL都放在一个列表里,我们应该设计一个更合理的数据结构来存放这些待爬取的URL才是,比如队列或者优先队列。

3)对各个网站的url,我们一视同仁,事实上,我们应当区别对待。大站好站优先原则应当予以考虑。

4)每次发起请求,我们都是根据url发起请求,而这个过程中会牵涉到DNS解析,将url转换成ip地址。一个网站通常由成千上万的URL,因此,我们可以考虑将这些网站域名的IP地址进行缓存,避免每次都发起DNS请求,费时费力。

5)解析到网页中的urls后,我们没有做任何去重处理,全部放入待爬取的列表中。事实上,可能有很多链接是重复的,我们做了很多重复劳动。

6)…..

4.找了这么多茬后,很有成就感,真正的问题来了,学挖掘机到底哪家强?

现在我们就来一一讨论上面找茬找出的若干问题的解决方案。

1)并行爬起问题

我们可以有多重方法去实现并行。

多线程或者线程池方式,一个爬虫程序内部开启多个线程。同一台机器开启多个爬虫程序,如此,我们就有N多爬取线程在同时工作。能大大减少时间。

此外,当我们要爬取的任务特别多时,一台机器、一个网点肯定是不够的,我们必须考虑分布式爬虫。常见的分布式架构有:主从(Master——Slave)架构、点对点(Peer to Peer)架构,混合架构等。

说道分布式架构,那我们需要考虑的问题就有很多,我们需要分派任务,各个爬虫之间需要通信合作,共同完成任务,不要重复爬取相同的网页。分派任务我们要做到公平公正,就需要考虑如何进行负载均衡。负载均衡,我们第一个想到的就是Hash,比如根据网站域名进行hash。

负载均衡分派完任务之后,千万不要以为万事大吉了,万一哪台机器挂了呢?原先指派给挂掉的哪台机器的任务指派给谁?又或者哪天要增加几台机器,任务有该如何进行重新分配呢?

一个比较好的解决方案是用一致性Hash算法

2)待爬取网页队列

如何对待待抓取队列,跟操作系统如何调度进程是类似的场景。

不同网站,重要程度不同,因此,可以设计一个优先级队列来存放待爬起的网页链接。如此一来,每次抓取时,我们都优先爬取重要的网页。

当然,你也可以效仿操作系统的进程调度策略之多级反馈队列调度算法。

3)DNS缓存

为了避免每次都发起DNS查询,我们可以将DNS进行缓存。DNS缓存当然是设计一个hash表来存储已有的域名及其IP。

4)网页去重

说到网页去重,第一个想到的是垃圾邮件过滤。垃圾邮件过滤一个经典的解决方案是Bloom Filter(布隆过滤器)。布隆过滤器原理简单来说就是:建立一个大的位数组,然后用多个Hash函数对同一个url进行hash得到多个数字,然后将位数组中这些数字对应的位置为1。下次再来一个url时,同样是用多个Hash函数进行hash,得到多个数字,我们只需要判断位数组中这些数字对应的为是全为1,如果全为1,那么说明这个url已经出现过。如此,便完成了url去重的问题。当然,这种方法会有误差,只要误差在我们的容忍范围之类,比如1万个网页,我只爬取到了9999个,剩下那一个网页,who cares!

5)数据存储的问题

数据存储同样是个很有技术含量的问题。用关系数据库存取还是用NoSQL,抑或是自己设计特定的文件格式进行存储,都大有文章可做。

6)进程间通信

分布式爬虫,就必然离不开进程间的通信。我们可以以规定的数据格式进行数据交互,完成进程间通信。

7)……

废话说了那么多,真正的问题来了,问题不是学挖掘机到底哪家强?而是如何实现上面这些东西!:)

实现的过程中,你会发现,我们要考虑的问题远远不止上面这些。纸上得来终觉浅,觉知此事要躬行!

审核编辑 :李倩
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4613

    浏览量

    92957
  • 数据结构
    +关注

    关注

    3

    文章

    573

    浏览量

    40138
  • 爬虫
    +关注

    关注

    0

    文章

    82

    浏览量

    6895

原文标题:网页爬虫及其用到的算法和数据结构

文章出处:【微信号:TheAlgorithm,微信公众号:算法与数据结构】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    IP地址数据信息和爬虫拦截的关联

    IP地址数据信息和爬虫拦截的关联主要涉及到两方面的内容,也就是数据信息和爬虫。IP 地址数据信息的内容丰富,包括所属地域、所属网络运营商、访
    的头像 发表于 12-23 10:13 54次阅读

    DDC264配置寄存器数据写入和320 DCLK时钟脉冲后的回读数据结构是什么?

    配置寄存器数据写入和320 DCLK时钟脉冲后的回读数据结构是什么? 根据注和表9,16位配置寄存器数据,4位修订ID, 300位校验模式,怎么可能有1024 TOTAL READBACK BITS, format = 0
    发表于 11-19 07:58

    视觉软件HALCON的数据结构

    在研究机器视觉算法之前,我们需要先了解机器视觉应用中涉及的基本数据结构。Halcon数据结构主要有图像参数和控制参数两类参数。图像参数包括:image、region、XLD,控制参数包括:string、integer、real、
    的头像 发表于 11-14 10:20 403次阅读
    视觉软件HALCON的<b class='flag-5'>数据结构</b>

    如何利用海外爬虫IP进行数据抓取

    利用海外爬虫IP进行数据抓取需要综合考虑多个方面。
    的头像 发表于 10-12 07:54 201次阅读

    详细解读爬虫多开代理IP的用途,以及如何配置!

    爬虫多开代理IP是一种在爬虫开发中常用的技术策略,主要用于提高数据采集效率、避免IP被封禁以及获取地域特定的数据
    的头像 发表于 09-14 07:55 509次阅读

    AN-1926:M-LVDS简介及其时钟和数据分配应用

    电子发烧友网站提供《AN-1926:M-LVDS简介及其时钟和数据分配应用.pdf》资料免费下载
    发表于 09-04 09:36 0次下载
    AN-1926:M-LVDS简介<b class='flag-5'>及其</b>时钟<b class='flag-5'>和数据</b>分配应用

    嵌入式常用数据结构有哪些

    在嵌入式编程中,数据结构的选择和使用对于程序的性能、内存管理以及开发效率都具有重要影响。嵌入式系统由于资源受限(如处理器速度、内存大小等),因此对数据结构的选择和使用尤为关键。以下是嵌入式编程中常用的几种数据结构,结合具体特点和
    的头像 发表于 09-02 15:25 491次阅读

    网络爬虫,Python和数据分析

    电子发烧友网站提供《网络爬虫,Python和数据分析.pdf》资料免费下载
    发表于 07-13 09:27 1次下载

    数据采集方法有哪些?工具有哪些?

    数据采集是数据分析和数据科学的基础,它涉及到从各种来源收集、整理和存储数据的过程。以下是一些常见的数据采集方法和工具,以及它们的特点和应用场
    的头像 发表于 07-01 15:35 1369次阅读

    探索编程世界的七大数据结构

    结构就像是一颗倒挂的小树,有根、有枝、有叶。它是一种非线性的数据结构,以层级的方式存储数据,顶部是根节点,底部是叶节点。
    的头像 发表于 04-16 12:04 388次阅读

    TASKING编译器是否可以将数据结构设置为 \"打包\"?

    TASKING 编译器是否可以将数据结构设置为 \"打包\"? GCC 很早以前就提供了这种可能性,可以将__attribute__((packed))与对齐指令结合使用。 对于
    发表于 03-05 06:00

    全球新闻网封锁OpenAI和谷歌AI爬虫

    分析结果显示,至2023年底,超半数(57%)的传统印刷媒体如《纽约时报》等已关闭OpenAI爬虫,反之电视广播以及数字原生媒体相应地分别为48%和31%。而对于谷歌人工智能爬虫,32%的印刷媒体采取相同措施,电视广播和数字原生
    的头像 发表于 02-27 15:31 862次阅读

    矢量与栅格数据结构各有什么特征

    矢量数据结构和栅格数据结构是地理信息系统(GIS)中最常用的两种数据结构。它们在存储和表示地理要素上有着不同的方法和特征。在接下来的文章中,我们将详细介绍这两种数据结构并比较它们的特点
    的头像 发表于 02-25 15:06 2605次阅读

    如何解决Python爬虫中文乱码问题?Python爬虫中文乱码的解决方法

    如何解决Python爬虫中文乱码问题?Python爬虫中文乱码的解决方法 在Python爬虫过程中,遇到中文乱码问题是常见的情况。乱码问题主要是由于编码不一致所导致的,下面我将详细介绍如何解
    的头像 发表于 01-12 15:11 2422次阅读

    区块链是什么样的数据结构组织

    区块链是一种特殊的数据结构,它以分布式、去中心化的方式组织和存储数据。区块链的核心原理是将数据分布在网络的各个节点上,通过密码学算法保证数据
    的头像 发表于 01-11 10:57 2263次阅读