0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何在射频应用中实现超快速电源暂态响应

微云疏影 来源:ADI 作者:ADI 2022-12-07 09:52 次阅读

本文展现了在无线尤其是在射频领域应用中,实现超快速电源瞬态响应的实用方法。其旨在解决由于电源瞬态消隐时间,给系统设计开发者带来的信号处理效率低下的问题与挑战。针对不同的应用,ADI提出了相应的示例解决方案,并引入了Silent Switcher 3单片电源产品实现最佳瞬态性能。

简介

信号处理单元和片上系统(SoC)单元通常具有突然改变的负载瞬态变化。这种负载瞬态变化将干扰电源电压,而电源电压在射频(RF)应用中极其重要,这种变化的电源电压又会高度影响时钟频率,致使射频片上系统(RFSoCs)通常在负载瞬态过程中使用消隐时间。在5G应用中,信息质量与过渡区间中的消隐时间高度相关。因此,对于任何射频片上系统(RFSoC)来说,越来越需要减少电源侧的负载瞬态效应,以提高系统级性能。本文将介绍几种在射频应用中实现电源快速瞬态响应的方法。

用于射频应用的快速瞬态Silent Switcher 3系列

实现快速瞬态电源轨的最直接方法之一是选择具有快速瞬态性能的稳压器。Silent Switcher 3系列IC具有极低频输出噪声、快速瞬态响应、低EMI辐射和高效的特性。它采用超高性能误差放大器设计,即使采用激进的补偿方法也能提供额外的稳定性。4MHz的最大开关频率使IC能够在固定频率峰值电流控制模式下将控制环路的带宽推至50kHz的范围。表1列出了设计人员可以选择用以实现快速瞬态性能的 Silent Switcher 3 IC。

表1.Silent Switcher 3系列参数

poYBAGOP8fmAX-y3AABVv8h1SAE927.png

图1显示了基于LT8625SP用于5G RFSoC的典型1V输出电源,其同时需要满足快速瞬态响应和低纹波/噪声水平。1V的负载由发射/接收相关电路以及本振(LO)和压控振荡器(VCO)组成。发射/接收负载会在频分双工 (FDD) 操作中出现负载电流突变。同时,LOs/VCOs负载恒定,但要求极高精度与极低噪声。LT8625SP的高带宽特性使设计人员能够使用第二电感(L2)分离动态负载和静态负载,从而在单个IC上为两个关键的1V负载组供电。图2显示了4A到6A动态负载瞬态的输出电压响应。5us内动态负载即可恢复,且峰值电压小于0.8%,这最小化了对静态负载侧的影响,峰值电压仅小于0.1%。可通过改进此电路,用以适应其他输出组合,如0.8V和1.8V,由于低频范围的超低噪声、低电压纹波和超快瞬态响应,因而无需达到LDO稳压器级均可直接为RFSoC供电。

pYYBAGOP8fmAMVRjAAC0EJBVJeE827.png

图1.LT8625SP的典型应用电路,动态/静态射频负载分离

poYBAGOP8fmAJND3AADDj2oS3G8444.png

图2.负载瞬态响应很快,VOUT偏差极小,不会影响静态负载

在时分双工(TDD)模式下,与噪声紧密相关的LO/VCO会随着发送/接收模式的变化而加载和卸载。因此,可以使用图3所示的简化电路,因为所有负载都被视为动态负载,同时更急切需要后置滤波来保持LO/VCO的低纹波/低噪声特性。馈通模式下的3端子电容器可实现足够的后置滤波,其最小化的等效L可保持负载瞬态的快速带宽。馈通电容与远端输出电容一起形成了另外两个LC滤波电路,而所有Ls都来自3端电容的等效串联电感(ESL),其极小因而对负载瞬态的危害较小。图3还说明了Silent Switcher 3系列的简单远程检测连接。由于独特的参考输出和反馈技术,只需将SET引脚电容(C1)的接地和OUTS引脚开尔文连接到所需的远程反馈点。此种连接无需电平转换电路。图4显示了1A负载瞬态响应波形,恢复时间小于5us,输出电压纹波小于1mV。

pYYBAGOP8fqAfTNaAADIX8krgLA311.png

图3.LT8625SP的典型应用电路,动态/静态射频负载合并

poYBAGOP8fqAD2d8AACzZydfOCA527.png

图4.馈通电容可提升瞬态响应,同时保持最小输出电压纹波

通过预充电信号驱动Silent Switcher 3系列IC实现快速瞬态响应

在某些情况下,若信号处理单元功能强大、同时具有足够的引脚(GPIO),并且信号处理方式合理得当,就可以预知瞬态发生。这通常发生在一些FPGA的电源设计中,其中可生成预充电信号辅助驱动电源瞬态响应。图5为一类典型应用电路,该电路使用FPGA生成的预充电信号在实际负载转换发生之前提供偏置,以便LT8625SP可以有额外的时间来适应负载扰动,而不会产生过大的输出电压(VOUT)偏差和恢复时间。由于预充电信号对反馈造成干扰,因此省略了从FPGA的管脚(GPIO)到逆变器输入的调谐电路。电平控制为35mV。此外,为了避免预充电信号对稳态的影响,在预充电信号和OUTS之间设置了一个高通滤波器。图6显示了1.7A至4.2A负载瞬态响应波形。预充电信号在实际负载瞬态之前施加到反馈端(OUTS),其恢复时间小于5us。

pYYBAGOP8fuAMqEcAACv6FYPzDw360.png

图5.T8625SP将预充电信号馈入OUTS引脚以实现快速瞬态响应

pYYBAGOP8fuAU_cEAADY2JqrzSM494.png

图6.预充电信号和负载瞬态同时影响LT8625SP,实现快速恢复时间

电路主动降压以实现超快速恢复瞬态

在波束形成器应用中,电源电压为适应不同的功率水平时刻变化。因此,对电源电压的精度要求通常为5%至10%的区间。在此应用中,稳定性比电压精度更重要,在负载瞬态期间最小化恢复时间将最大限度地提高数据处理效率。降压电路非常适合此应用,因为下降电压可减少甚至消除恢复时间。如图7所示LT8627SP的主动降压电路的原理图。在误差放大器的负输入端(OUTS)和输出端(VC)之间添加了一个额外的降压电阻,以在瞬态期间保持反馈控制环路中的稳态误差。下降电压可表示为:

poYBAGOP8fuAfj97AAAZI0TzPUk881.png

pYYBAGOP8fyAf4WZAACeTHTaDe0017.png

图7.LT8627SP的OUTS和VC之间放置一个主动降压电阻,以实现快速瞬态恢复时间

ΔVOUT是负载瞬态引起的初始电压变化,ΔIOUT是负载瞬态电流,g是用于切换电流增益的VC引脚。设计图7所示的降压电路时,需要特别考虑以下几点:

下降电流不应超过VC引脚电流限值。对于LT8627SP的误差放大器输出,最好将电流限制在200?A以下以避免饱和,这可以通过改变R7和R8的值来实现。

下降电压需要适应输出电容,以便瞬态期间的电压偏差与下降电压大致接近,从而在瞬态期间实现最短恢复时间。

图8显示了上述电路在1A至16A至1A负载瞬态期间的典型波形。值得注意的是,现在16A至1A负载瞬态速度不再受带宽限制,但受稳压器最短导通时间限制。

poYBAGOP8fyAf1SlAACOi1On3eE100.png

图8.可以实现降压瞬态响应,以最大限度地缩短LT8627SP的瞬态恢复时间

结论

由于高速信号处理的时间关键特性,无线射频领域正变得越来越依赖计算,并对瞬态响应时间敏感。系统设计工程师面临着提高电源瞬态响应速度以最小化消隐时间的挑战。Silent Switcher 3系列是下一代单片稳压器,针对无线、工业与医疗保健领域的噪声敏感、强动态负载瞬态解决方案进行了优化。依据负载条件,可以应用特殊技术和电路进一步改善瞬态响应。

来源:ADI

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 射频
    +关注

    关注

    104

    文章

    5551

    浏览量

    167590
  • 信号处理
    +关注

    关注

    48

    文章

    1006

    浏览量

    103206
  • 电源电压
    +关注

    关注

    2

    文章

    987

    浏览量

    23949
收藏 人收藏

    评论

    相关推荐

    何在Altium Designer快速定位器件

    想知道如何在Altium Designer快速定位器件嘛?
    的头像 发表于 10-12 09:28 2059次阅读
    如<b class='flag-5'>何在</b>Altium Designer<b class='flag-5'>中</b><b class='flag-5'>快速</b>定位器件

    瞬态响应的定义和重要性

    描述的是系统对输入信号变化的快速响应能力。在电子电路,瞬态响应通常指的是电路在输入信号突然变化时,输出电压或电流随时间变化的特性。
    的头像 发表于 10-10 15:24 1084次阅读

    何在反激式拓扑实现软启动

    电子发烧友网站提供《如何在反激式拓扑实现软启动.pdf》资料免费下载
    发表于 09-04 11:09 0次下载
    如<b class='flag-5'>何在</b>反激式拓扑<b class='flag-5'>中</b><b class='flag-5'>实现</b>软启动

    何在DRA821U上使用Linux实现快速引导

    电子发烧友网站提供《如何在DRA821U上使用Linux实现快速引导.pdf》资料免费下载
    发表于 09-03 10:11 0次下载
    如<b class='flag-5'>何在</b>DRA821U上使用Linux<b class='flag-5'>实现</b><b class='flag-5'>快速</b>引导

    基于快速电流环路的PMSM快速响应控制

    电子发烧友网站提供《基于快速电流环路的PMSM快速响应控制.pdf》资料免费下载
    发表于 08-30 11:01 0次下载
    基于<b class='flag-5'>快速</b>电流环路的PMSM<b class='flag-5'>快速</b><b class='flag-5'>响应</b>控制

    在航天和国防应用中使用射频功率放大器实现快速VGS开关

    电子发烧友网站提供《在航天和国防应用中使用射频功率放大器实现快速VGS开关.pdf》资料免费下载
    发表于 08-28 09:49 0次下载
    在航天和国防应用中使用<b class='flag-5'>射频</b>功率放大器<b class='flag-5'>实现</b><b class='flag-5'>快速</b>VGS开关

    何在FPGA实现随机数发生器

    分享如何在Xilinx Breadboardable Spartan-7 FPGA, CMOD S7实现4位伪随机数发生器(PRNGs)。
    的头像 发表于 08-06 11:20 615次阅读
    如<b class='flag-5'>何在</b>FPGA<b class='flag-5'>中</b><b class='flag-5'>实现</b>随机数发生器

    什么叫暂态,什么叫稳态呢

    暂态和稳态是两个重要的概念,广泛应用于工程、物理、数学等领域。 暂态的概念 暂态(Transient)是指系统在受到外部扰动或内部变化后,从初始状态向最终状态过渡的过程。在这个过程
    的头像 发表于 07-26 09:46 2586次阅读

    暂态稳定和静态稳定的区别是什么

    暂态稳定和静态稳定是电力系统稳定性分析的两个重要概念,它们分别描述了电力系统在受到扰动后的动态响应和稳态运行状态。下面将介绍暂态稳定和静态稳定的区别,并从多个方面进行比较。 定义上的
    的头像 发表于 07-26 09:41 2029次阅读

    电路产生暂态过程的原因

    暂态过程是电气工程和电子学的一个重要概念,它描述了电路在受到外部激励或内部参数变化时,从初始状态向稳态过渡的过程。暂态过程的研究对于理解和设计各种电子设备和系统至关重要。 一、外部激励 电源
    的头像 发表于 07-26 09:36 651次阅读

    何在Tensorflow实现反卷积

    在TensorFlow实现反卷积(也称为转置卷积或分数步长卷积)是一个涉及多个概念和步骤的过程。反卷积在深度学习领域,特别是在图像分割、图像分辨率、以及生成模型(如生成对抗网络GANs)等任务
    的头像 发表于 07-14 10:46 553次阅读

    使用RS示波器和频率响应分析选件进行电源控制环路响应测量

    任务为确保电压稳压器和开关电源的稳定性,必须测量和表征控制环路特性。进行适当补偿的电压控制器可实现稳定的输出电压,并降低负载变化和供电电压变动的影响。控制电路的质量决定整个DC/DC转换器的稳定性
    的头像 发表于 01-20 08:30 583次阅读
    使用RS示波器和频率<b class='flag-5'>响应</b>分析选件进行<b class='flag-5'>电源</b>控制环路<b class='flag-5'>响应</b>测量

    何在CY8CPROTO-062S2-43439对CYW43439进行射频测量?

    何在 CY8CPROTO-062S2-43439 对CYW43439进行射频测量? 对于外置天线,我移除了R15,添加了R11,并在密西根大学添加了天线连接器。 但是在进行 TX 测试、传输
    发表于 01-18 09:58

    电路暂态过程的概念 RC、RL串联电路的暂态过程解析

    电路暂态过程是指在电路,由于电源或负载的突然变化,导致电流和电压不能立即达到稳定状态,而需要经过一段时间才能逐渐趋于稳定的过程。
    的头像 发表于 12-31 17:17 9424次阅读
    电路<b class='flag-5'>暂态</b>过程的概念  RC、RL串联电路的<b class='flag-5'>暂态</b>过程解析

    电源负载动态响应测试方法

    。 一、测试目的 电源负载动态响应测试旨在评估电源在负载变化过程的动态响应能力,包括负载瞬时变化的快速
    的头像 发表于 12-19 13:47 2323次阅读