0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

RFIC在高容量、低延迟LEO卫星用户和地面终端方面的进步

星星科技指导员 来源:ADI 作者:Donal McCarthy 2022-12-13 10:21 次阅读

本文介绍了推动低地球轨道(LEO)卫星部署的主要市场趋势。它将讨论LEO卫星系统的基本操作,并介绍一些半导体RFIC的进步,这些进展使下一代Ku和Ka波段LEO用户和地面终端成为可能。

LEO连接——成功之路

卫星通信 (satcom) 是一种传输语音、视频和数据的既定手段,用于在称为地球静止赤道轨道 (GEO)、中地球轨道 (MEO) 和 LEO 的主流轨道上的各种用例中。卫星通信被视为通信GPS的有效手段,用于导航,天气信息,电视广播,语音,数据,也用于成像和基于科学的应用。然而,围绕LEO卫星星座计划新一波承诺的高速互联网连接。这将为下一代互联网通信提供低延迟、高容量的宽带连接。

LEO卫星将在5G蜂窝连接的持续推出中发挥重要作用。卫星网络越来越多地参与3GPP标准化,它们在未来网络中的预期作用正在开发中。2017年,3GPP标准机构内启动了活动,以了解卫星通信网络在5G连接中的可行性。通过 3GPP 标准的第 15、16、17 和 18 版,开发了多项活动来支持这些网络的集成。LEO卫星可以为服务不足的地区提供广域覆盖,为移动中的人们提供服务的连续性,连接到机器对机器(M2M)/物联网IoT)设备,并以具有成本效益的方式成为5G的显着升级路径。

下一代LEO系统将在地球表面上方500公里至2000公里的轨道上运行,并将为过去的卫星网络提供技术上优越的解决方案。如此接近地球意味着它们将提供更低的延迟连接,这对于消费者或商业用例(例如,互联网游戏或实时控制工业/医疗设备)非常重要。低地球轨道卫星应提供大约50毫秒的延迟(下一代技术将改善到《20毫秒),而GEO则为700毫秒。

低地球轨道卫星的一个关键推动因素是,由于轨道较低,它们的辐射暴露要低得多。这很重要,因为这意味着可以放宽昂贵且有时令人望而却步的抗辐射测试。这将产生规模经济,因为建造低地球轨道卫星的成本现在大大降低。更少的辐射意味着半导体工艺的更广泛可用性,因此意味着可以使用的组件。

鉴于轨道较低,预计部署的卫星数量要多得多。此类卫星的平均寿命将比以前的用例短得多;也许在 5 到 8 年之间,之后这些卫星将脱离轨道并需要更换。低地球轨道卫星必须具有成本效益才能发射和重新发射替代品。

所有这些趋势都引起了行业监管机构的注意,因为LEO宽带连接业务案例开始看起来很强劲。如果我们还记得在 1990 年代,这家互联网企业是几家公司的目标,但不幸的是,由于部署成本高和需求有限,它失败了。快进到今天,我们看到半导体技术的显着进步提供了前所未有的性能和集成度。再加上在更多农村或服务不足的环境中对高速、低延迟互联网连接的指数级需求,以及将卫星通信集成到 5G 标准中,未来的 LEO 星座将处于一个更好的成功平台上。

在撰写本文时,预计用户可以实现 100 Mbps 的最大下行链路数据速度,未来可能会扩展到 150 Mbps,这是多用户、全时视频流的理想选择。

LEO面临的一个挑战是卫星的不断移动性质 - 星座确实需要完全部署才能成为最小可行的服务。这意味着初始支出很高,因为低地球轨道卫星的数量更多,因为它们的轨道较低。但即便如此,这似乎并不是现在成功的障碍,对投资者来说,无处不在的覆盖的商业案例是强有力的。

低地球轨道卫星系统如何工作?

LEO卫星通信系统由三个主要组件组成。

用户终端/用户设备 (UE)

这些是用户和卫星之间的直接链接,并且往往是低成本的,易于设置的终端位于家庭中,但也可以是移动终端(例如,海事,移动中的卫星通信,战术便携式无线电)。用户终端利用高水平的 IC 集成来简化物料清单 (BOM)、降低成本并保持较小的外形尺寸。

地面站/网关

这些是通常通过光纤连接到服务器(互联网连接的数据中心)的地面连接,它们将卫星连接到地面。它们部署在地球上的固定位置。

卫星

卫星群称为星座,它们绕地球运行,同时提供连接终端和网关的链接。

LEO卫星在太空中移动,通常一颗卫星将在90分钟到110分钟的时间内绕地球运行,称为轨道周期。因此,连接到卫星的用户只会在该卫星的范围内停留很短的时间(最多 20 分钟)。因此,普通用户在正常运行期间将连接到多颗卫星。因此,必须将系统的用户移交给进入范围的其他卫星,其方式类似于人在行驶中的汽车中使用手机和蜂窝网络中的一个基站移交给另一个基站。这对如何控制波束以保持与最合适卫星的最佳链接提出了严格的要求。

另一个有趣的演变是卫星系统在超出地面站范围时如何保持运行。在图1中,我们展示了一些可能影响地面站链路速度的恶劣天气。传统上,卫星使用弯曲的管道,这意味着卫星必须始终找到与地球或其他方式(飞机)的链接路径,以作为返回太空中另一颗卫星的跳跃,然后可以在地面站的范围内。一种新技术是通过卫星间链路,在空间中使用光学或V和E波段连接来连接卫星。

用户终端上/下变频器的进步

用户终端正在推动IC集成的显著提高,ADI公司正在利用硅工艺技术的性能和集成能力来满足这一需求。这些解决方案需要最高水平的IC集成度,以实现最小外形的无线电终端,同时保持最低的功耗并严格遵守每个无线电的最佳成本。

上/下变频器(UDC)是用户终端中的基础产品,它们将调制解调器IF或基带信息直接连接到Ku频段或Ka频段。

RFIC UDC 的频率覆盖目标是:

Ku 频段:~10.7 GHz 至 ~14.5 GHz

下行链路(卫星到地面):10.7 GHz 至 12.7 GHz

上行链路(地面到卫星):14 GHz 至 14.5 GHz

Ka 频段:~18 GHz 至 ~31 GHz

下行链路(卫星到地面):17.7 GHz 至 21 GHz

上行链路(地面到卫星):27 GHz 至 31 GHz

下行链路和上行链路的频率是分开的,因此从卫星到用户终端的通信使用两个独立的频段。因此,RFIC公司必须为每个用户终端设计单独的频段上下转换器

根据上行链路与下行链路的不同,用户终端链路通常覆盖 125 MHz 至 250 MHz 的信道带宽 (BW),网关覆盖 250 MHz 至 500 MHz。但是,某些部署在用户和网关链路之间具有共享带宽功能,因此信道带宽可以在其运行的频率中重新配置。

低地球轨道卫星不断移动,如图1所示。因此,端子内的上/下变频器频率合成器必须实现快速锁定时间,以实现不间断连接。频率合成器用于辅助频率上变频和下变频。它们在使终端能够在运行期间连接和重新连接到不同的卫星方面发挥着至关重要的作用,因为空中频率在从一颗卫星到另一颗卫星的操作频段(即Ka和Ku频段)内不断变化。

ADI开发了一系列针对用户终端的Ku和Ka频段UDC,以解决尺寸、重量、面积、功耗和成本(SWaP-C)问题。这些UDC包含广泛的RF和IF信号调理,例如滤波器放大器、衰减器、PLLVCO和功率检测。所有IC的设计都考虑到了用户终端的信号链性能。ADMV4630/ADMV4640是Ku频段UDC,支持卫星调制解调器的IF接口,如图2和图3所示,IC性能亮点如表所示。

pYYBAGOX4dqATHMtAABLJvJNgLE891.png

图2.高度集成的Ku频段上变频器,带有直接来自卫星通信调制解调器的IF接口。

poYBAGOX4eGABDYIAABPd-32_6M071.png

图3.高度集成的Ku频段下变频器,具有直接与卫星通信调制解调器的IF接口。

针对更高频率的Ka频段,ADI开发了ADMV4530/ADMV4540 UDC(图4和图5),支持需要I/Q基带接口的卫星通信调制解调器。请注意,ADMV4530上变频器是一款双模器件,也可支持IF接口。这些解决方案采用硅设计,可提供最高水平的集成度,以管理这些大批量终端应用中的集成压力。

poYBAGOX4eiAF27TAABTzm7TgWk995.png

图4.高度集成的Ka频段上变频器,具有直接来自卫星通信调制解调器的I/Q和IF接口。

pYYBAGOX4e2AfOWjAABSaEj5uWw390.png

图5.高度集成的Ka频段下变频器,具有直接连接到卫星通信调制解调器的I/Q接口。

更高性能的终端 UDC

终端市场中的一些应用是性能驱动的,对其尺寸和最低成本设计目标的限制较少。他们可以自由使用离散的RFIC解决方案。将元件保存在单独的封装中,可以混合使用包括MESFET、pHEMT、BiCMOS和CMOS IC在内的工艺技术,以优化任何设计要求。分立式设计允许多种类型的性能与尺寸权衡,从而在设计过程中提供最大的灵活性。设计人员可以创建更高性能的无线电,提供更高的输出功率并支持更宽的带宽。此外,还可以实现更高的接收器灵敏度,以改善动态范围和杂散性能。应该注意的是,地面站/网关也属于此类解决方案。网关的尺寸更大,当然不是由终端级别的相同集成需求驱动的。网关利用不同的工艺技术为市场带来性能最优化的解决方案。在ADI,我们将继续扩展分立式解决方案产品组合,以应对各种用例。图6所示为分立式高性能解决方案。

poYBAGOX4fSAEEEvAAAtL_CX054169.png

图6.分立式HMC798A Ka频段用户终端的功能图。

使用电子可控天线降低用户终端的成本

公司正致力于通过消除传统上与安装设备并定位卫星位置的专业承包商相关的昂贵安装成本来降低用户终端的部署成本。这是通过将天线与在单个室外机(ODU)中处理通信链路所需的所有电子设备(例如移相元件,RFIC UDC)相结合来实现的。ODU是驻留在家庭外部并瞄准天空的天线阵列。室内机(IDU)连接到ODU,并用作传统路由器(有线或无线),为用户提供互联网连接(例如,PC或电话)。

如前所述,LEO星座将有许多卫星进出地面终端视野,因此使用电子可控天线(ESA)的效率要高得多,因为它可以通过电子方式引导发射和接收能量束来实现高方向性卫星的方向。因此,当卫星进出用户终端的视野时,通过卫星之间的近乎瞬时的切换,保持从一颗卫星到另一颗卫星的最佳链路。事实上,当您想到轨道周期和在正常运行过程中需要连接的卫星数量时,ESA几乎是一项要求。

为了应对这一挑战,ADI开发了Ku波段波束形成集成电路(BFIC)技术。ADMV4680是一款专为用户终端设计的硅解决方案,允许半双工通道独立控制信号的增益和相位。值得注意的是,该IC的尺寸仅为8.2 mm2如图7所示。

开发BFIC技术以最大限度地降低整体无线电成本的核心是系统和阵列专业知识。机械装配和PCB设计(包括堆叠和层数)是无线电成本驱动因素的一部分。当BFIC的开发考虑了机械和PCB设计时,将产生最低的总体无线电成本。在ADI,我们与客户密切合作,并拥有内部PCB专家来帮助您。事实上,IC设计和最终配置是系统权衡研究的一部分。

poYBAGOX4fqATW02AABGp0aIV_8749.png

图7.高度集成的半双工 Ku 波段 4 通道波束成形 IC。

采用ESA跟踪LEO卫星并优化链路速度可实现低成本设置,通常这些设置是即插即用的。ESA和向更集成的ODU的迁移从根本上简化了部署并降低了系统成本。ESA还实现了更扁平的面板和美观的设计。

值得注意的是,在最高性能终端应用中,使用双抛物面转向天线。在这些情况下,成本和美学不是主要驱动因素,整体性能是重点。当涉及到消费者和注重成本的小型企业解决方案时,ESA是迄今为止实现最低无线电成本同时满足系统设计目标的最佳方式。

结论

LEO互联网连接是一个令人兴奋的新领域,当今大多数政府和互联网提供商都在考虑太空竞赛。随着世界继续变得更加互联,LEO将通过进一步加强3GPP标准从太空到农村地区的连接,在5G中发挥重要作用。用户终端上的RFIC集成要求变得越来越具有挑战性,ADI公司将继续开发该领域的解决方案和路线图IC。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 互联网
    +关注

    关注

    54

    文章

    11162

    浏览量

    103368
  • LEO
    LEO
    +关注

    关注

    0

    文章

    32

    浏览量

    9078
  • RFIC
    +关注

    关注

    1

    文章

    60

    浏览量

    24487
收藏 人收藏

    评论

    相关推荐

    卫星无线通信行业的应用

    本系列文章的第1篇《现代卫星技术如何改写太空竞赛格局》中,我们探讨了卫星通信市场的诸多方面,并初步讨论了其对5G新空口(NR)蜂窝网络
    的头像 发表于 11-20 17:18 396次阅读
    <b class='flag-5'>低</b>轨<b class='flag-5'>卫星</b><b class='flag-5'>在</b>无线通信行业的应用

    不同卫星轨道的对比分析

    卫星技术飞速发展的背景下,低地球轨道(LEO卫星已成为一项颠覆性的创新技术。这些卫星位于距离地球表面约100至500英里的高空,彻底改变
    的头像 发表于 11-12 09:55 332次阅读
    不同<b class='flag-5'>卫星</b>轨道的对比分析

    卫星通信使用到的频段有哪些

    ,同时地理环境不对其产生约束。卫星通信岛屿、沙漠等业务地区,船舶、飞机等地面网络难以覆盖区域得到了普遍的应用,其提供的移动通信服务具有跨度大、距离远、机动性强、通信方式灵活等优点。
    的头像 发表于 10-11 09:24 1029次阅读

    顶坚卫星通讯终端:跨越边界,多领域应用的通信利器

    顶坚卫星通讯终端以其广泛的覆盖范围和无与伦比的灵活性,偏远地区通信、应急响应、航海航空、物联网连接等多个应用场景中大放异彩,成为连接世界、赋能未来的关键技术。顶坚
    的头像 发表于 09-30 09:53 275次阅读
    顶坚<b class='flag-5'>低</b>轨<b class='flag-5'>卫星</b>通讯<b class='flag-5'>终端</b>:跨越边界,多领域应用的通信利器

    顶坚卫星通讯终端:连接无界,赋能未来

    通信,广泛应用于应急通信、物联网接入等多个领域,成为推动社会进步与数字化转型的重要力量。顶坚卫星通讯终端什么是
    的头像 发表于 09-29 11:03 234次阅读
    顶坚<b class='flag-5'>低</b>轨<b class='flag-5'>卫星</b>通讯<b class='flag-5'>终端</b>:连接无界,赋能未来

    【协“星”而上,直奔天命】从卫星通信技术到测试方案全景解析

    卫星通信是一种利用卫星作为中继站,连接地面和低层大气中的无线电通信站的技术。卫星通信系统由通信卫星地面
    的头像 发表于 09-05 08:07 1411次阅读
    【协“星”而上,直奔天命】从<b class='flag-5'>卫星</b>通信技术到测试方案全景解析

    光通信技术医疗健康方面的应用

    光通信技术医疗健康方面的应用是一个日益受到关注且快速发展的领域。随着科技的进步,光通信技术以其高速、大容量、低损耗、抗干扰等优势,医疗设
    的头像 发表于 08-09 16:19 1007次阅读

    迎接高容量SSD时代来临 | 江波龙将亮相COMPUTEX 2024(台北电脑展)

    、边缘计算等企业级用户提供高性能、延迟、可调功耗和高可靠性的存储解决方案,容量最大可达7.68TB。   96GB DDR5 RDIMM 和
    发表于 05-22 16:46 280次阅读
    迎接<b class='flag-5'>高容量</b>SSD时代来临 | 江波龙将亮相COMPUTEX 2024(台北电脑展)

    北斗卫星通讯终端有什么用?

    终端北斗卫星通讯终端具有以下功能:双向通信:没有移动通信信号覆盖的偏远山区、海洋、沙漠等地带,用户可以通过北斗短报文
    的头像 发表于 05-08 15:08 997次阅读
    北斗<b class='flag-5'>卫星</b>通讯<b class='flag-5'>终端</b>有什么用?

    fpga通信方面的应用

    FPGA通信方面的应用非常广泛,以下是一些主要的应用场景。
    的头像 发表于 03-27 14:10 1111次阅读

    北斗三短报文终端是什么?看完你就懂了

    。这种通信方式应急通信、野外作业、海上渔业等领域具有广泛的应用前景。 顶坚北斗三短报文终端的主要优点包括: 独立性:北斗三短报文终端不依赖于地面通信基站,而是直接通过北斗
    的头像 发表于 03-19 11:05 1150次阅读

    卫星如何与地面通信

    卫星地面通信是通过无线电波实现的。卫星地面通信的过程包括信号的发送、接收、处理和解码等环节。这使得卫星能够
    的头像 发表于 02-01 10:17 4141次阅读
    <b class='flag-5'>卫星</b>如何与<b class='flag-5'>地面</b>通信

    卫星通信系统的基本工作原理

    卫星通信链路建立:卫星通过地面站向指定区域发送通信信号。地面站将信号传输到控制中心,控制中心计算卫星
    发表于 02-01 10:11 2624次阅读

    手机直连卫星技术综述

    手机直连卫星,从字面意思理解其实就是手机可以跟卫星直接连接,从专业角度来阐述的话,其实可以定义为“空间卫星通信系统可以跟地面的通用手持终端
    发表于 01-11 10:22 3653次阅读
    手机直连<b class='flag-5'>卫星</b>技术综述

    星链(Starlink)发射6颗“手机直连LEO卫星

    SpaceX表示,这些卫星将首先用于美国测试其“手机直连卫星”服务,于此方面,该公司已与美国第二大移动通信网络运营商T-Mobile US合作。5G公众号了解到Starlink具有“
    的头像 发表于 01-05 16:21 1176次阅读