在阅读 VS Code 代码的过程中,我们会发现每一个模块中都有大量装饰器的使用,用来装饰模块以及其中依赖的模块变量。这样做的目的是什么呢?在这一篇中我们来详细分析一下。
依赖注入介绍
如果有这样一个模块 A,它的实现依赖另一个模块 B 的能力,那么应该如何设计呢?很简单,我们可以在 A 模块的构造函数中实例化模块 B,这样就可以在模块 A 内部使用模块 B 的能力了。
classA{
constructor(){
this.b=newB();
}
}
classB{}
consta=newA();
但是这样做有两个问题,一是模块 A 的实例化过程中,需要手动实例化模块 B,而且如果模块 B 的依赖关系发生变化,那么也需要修改模块 A 的构造函数,导致代码耦合。
二是在复杂项目中,我们在实例化模块 A 时,难以判断模块 B 是否被其他模块依赖而已经实例化过了,从而可能将模块 B 多次实例化。若模块 B 较重或者需要为单例设计,这将带来性能问题。
因此,更好的方式是,将所有模块的实例化交给外层框架,由框架统一管理模块的实例化过程,这样就可以解决上述两个问题。
classA{
constructor(privateb:B){
this.b=b;
}
}
classB{}
classC{
constructor(privatea:A,privateb:B){
this.b=b;
}
}
constb=newB();
consta=newA(b);
constc=newC(a,b);
这种将依赖对象通过外部注入,避免在模块内部实例化依赖的方式,称为依赖注入 (Dependencies Inject, 简称 DI)。这在软件工程中是一种常见的设计模式,我们在 Java 的 Spring,JS 的 Angular,Node 的 NestJS 等框架中都可以看到这种设计模式的应用。
当然,在实际应用中,由于模块众多,依赖复杂,我们很难像上面的例子一样,规划出来每个模块的实例化时机,从而编写模块实例化顺序。并且,许多模块可能并不需要第一时间被创建,需要按需实例化,因此,粗暴的统一实例化是不可取的。
因此我们需要一个统一的框架来分析并管理所有模块的实例化过程,这就是依赖注入框架的作用。
借助于 TypeScript 的装饰器能力,VSCode 实现了一个极为轻量化的依赖注入框架。我们可以先来简单实现一下,解开这个巧妙设计的神秘面纱。
最简依赖注入框架设计
实现一个依赖注入框架只需要两步,一个是将模块声明并注册到框架中进行管理,另一个是在模块构造函数中,声明所需要依赖的模块有哪些。
我们先来看模块的注册过程,这需要 TypeScript 的类装饰器能力。我们在注入时,只需要判断模块是否已经注册,如果没有注册,将模块的 id(这里简化为模块 Class 名称)与类型传入即可完成单个模块的注册。
exportfunctionInjectable():ClassDecorator{
return(Target:Class):any=>{
if(!collection.providers.has(Target.name)){
collection.providers.set(Target.name,target);
}
returntarget;
};
}
之后我们再来看看模块是如何声明依赖的,这需要 TypeScript 的属性装饰器能力。我们在注入时,先判断依赖的模块是否已经被实例化,如果没有,则将依赖模块进行实例化,并存入框架中管理。最终返回已经被实例化完成的模块实例。
exportfunctionInject():PropertyDecorator{
return(target:Property,propertyKey:string)=>{
constinstance=collection.dependencies.get(propertyKey);
if(!instance){
constDependencyProvider:Class=collection.providers.get(propertyKey);
collection.dependencies.set(propertyKey,newDependencyProvider());
}
target[propertyKey]=collection.dependencies.get(propertyKey);
};
}
最后只需要保证框架本身在项目运行前完成实例化即可。(在例子中表示为 injector)
exportclassServiceCollection{
readonlyproviders=newMap();
readonlydependencies=newMap();
}
constcollection=newServiceCollection();
exportdefaultcollection;
这样,一个最简化的依赖注入框架就完成了。由于保存了模块的类型与实例,它实现了模块的按需实例化,无需在项目启动时就初始化所有模块。
我们可以尝试调用它,以上面举出的例子为例:
@injectable()
classA{
constructor(@inject()privateb:B){
this.b=b;
}
}
@injectable()
classB{}
classC{
constructor(@inject()privatea:A,@inject()privateb:B){
this.b=b;
}
}
constc=newC();
无需知晓模块 A,B 的实例化时机,直接初始化任何一个模块,框架会自动帮你找到并实例化好所有依赖的模块。
VSCode 的依赖收集实现
上面介绍了一个依赖注入框架的最简实现。但当我们真正阅读 VSCode 的源码时,我们发现 VSCode 中的依赖注入框架貌似并不是这样消费的。
例如在下面这段鉴权服务中,我们发现该类并没有@injectable()作为类的依赖收集,并且依赖服务也直接用其类名作为修饰器,而不是@inject()。
//srcvsworkbenchservicesauthenticationrowserauthenticationService.ts
exportclassAuthenticationServiceextendsDisposableimplementsIAuthenticationService{
constructor(
@IActivityServiceprivatereadonlyactivityService:IActivityService,
@IExtensionServiceprivatereadonlyextensionService:IExtensionService,
@IStorageServiceprivatereadonlystorageService:IStorageService,
@IRemoteAgentServiceprivatereadonlyremoteAgentService:IRemoteAgentService,
@IDialogServiceprivatereadonlydialogService:IDialogService,
@IQuickInputServiceprivatereadonlyquickInputService:IQuickInputService
){}
}
其实这里的修饰符并不是真正指向类名,而是一个同名的资源描述符 id(VSCode 中称之为 ServiceIdentifier),通常使用字符串或 Symbol 标识。
通过 ServiceIdentifier 作为 id,而不是简单粗暴地通过类名称作为 id 注册 Service,有利于处理项目中一个 interface 可能存在多态实现,需要同时多个同名类实例的问题。
此外,在构造 ServiceIdentifier 时,我们便可以将该类声明注入框架,而无需@injectable()显示调用了。
那么,这样一个 ServiceIdentifier 该如何构造呢?
//srcvsplatforminstantiationcommoninstantiation.ts
/**
*The*only*validwaytocreatea{{ServiceIdentifier}}.
*/
exportfunctioncreateDecorator(serviceId:string):ServiceIdentifier{
if(_util.serviceIds.has(serviceId)){
return_util.serviceIds.get(serviceId)!;
}
constid=function(target:Function,key:string,index:number):any{
if(arguments.length!==3){
thrownewError('@IServiceName-decoratorcanonlybeusedtodecorateaparameter');
}
storeServiceDependency(id,target,index);
};
id.toString=()=>serviceId;
_util.serviceIds.set(serviceId,id);
returnid;
}
//被 ServiceIdentifier 装饰的类在运行时,将收集该类的依赖,注入到框架中。
functionstoreServiceDependency(id:Function,target:Function,index:number):void{
if((targetasany)[_util.DI_TARGET]===target){
(targetasany)[_util.DI_DEPENDENCIES].push({id,index});
}else{
(targetasany)[_util.DI_DEPENDENCIES]=[{id,index}];
(targetasany)[_util.DI_TARGET]=target;
}
}
我们仅需通过createDecorator方法为类创建一个唯一的ServiceIdentifier,并将其作为修饰符即可。
以上面的 AuthenticationService 为例,若所依赖的 ActivityService 需要变更多态实现,仅需修改 ServiceIdentifier 修饰符确定实现方式即可,无需更改业务的调用代码。
exportconstIActivityServicePlanA=createDecorator("IActivityServicePlanA");
exportconstIActivityServicePlanB=createDecorator("IActivityServicePlanB");
exportinterfaceIActivityService{...}
exportclassAuthenticationService{
constructor(
@IActivityServicePlanAprivatereadonlyactivityService:IActivityService,
){}
}
循环依赖问题
模块之间的依赖关系是有可能存在循环依赖的,比如 A 依赖 B,B 依赖 A。这种情况下进行两个模块的实例化会造成死循环,因此我们需要在框架中加入循环依赖检测机制来进行规避。
本质上,一个健康的模块依赖关系就是一个有向无环图(DAG),我们之前介绍过有向无环图在 excel 表格函数中的应用,放在依赖注入框架的设计中也同样适用。
我们可以通过深度优先搜索(DFS)来检测模块之间的依赖关系,如果发现存在循环依赖,则抛出异常。
//src/vs/platform/instantiation/common/instantiationService.ts
while(true){
letroots=graph.roots();
//ifthereisnomorerootsbutstill
//nodesinthegraphwehaveacycle
if(roots.length===0){
if(graph.length!==0){
throwCycleError();
}
break;
}
for(letrootofroots){
//createinstanceandoverwritetheservicecollections
constinstance=this._createInstance(root.data.desc,[]);
this._services.set(root.data.id,instance);
graph.removeNode(root.data);
}
}
该方法通过获取图节点的出度,将该类的全部依赖提取出来作为roots,然后逐个实例化,并从途中剥离该依赖节点。由于依赖树的构建是逐层依赖的,因此按顺序实例化即可。当发现该类的所有依赖都被实例化后,图中仍存在节点,则认为存在循环依赖,抛出异常。
总结
本篇文章简要介绍并实现了一个依赖注入框架,并解析了VSCode在实际问题上做出的一些改进。
实际上 VSCode 的依赖注入能力还有很多细节需要处理。例如异步实例化能力支持,通过封装 Deferred 类取得Promise执行状态,等等,在此就不一一展开了。感兴趣的同学可以参考 VSCode 源码:src/vs/platform/instantiation/common/instantiationService.ts,https://segmentfault.com/a/src/vs/platform/instantiation/common/instantiationService.ts做更进一步的学习。
审核编辑 :李倩
-
源码
+关注
关注
8文章
633浏览量
29134 -
变量
+关注
关注
0文章
613浏览量
28327 -
vscode
+关注
关注
1文章
154浏览量
7663
原文标题:VS Code 源码深入浅出 -- 依赖注入设计
文章出处:【微信号:玩转VS Code,微信公众号:玩转VS Code】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论