0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

VS Code源码深入浅出--依赖注入设计

jf_8lIj6kO1 来源:SegmentFault思否 作者:Duang 2022-12-14 10:37 次阅读

在阅读 VS Code 代码的过程中,我们会发现每一个模块中都有大量装饰器的使用,用来装饰模块以及其中依赖的模块变量。这样做的目的是什么呢?在这一篇中我们来详细分析一下。

依赖注入介绍


如果有这样一个模块 A,它的实现依赖另一个模块 B 的能力,那么应该如何设计呢?很简单,我们可以在 A 模块的构造函数中实例化模块 B,这样就可以在模块 A 内部使用模块 B 的能力了。

classA{
constructor(){
this.b=newB();
}
}

classB{}

consta=newA();

但是这样做有两个问题,一是模块 A 的实例化过程中,需要手动实例化模块 B,而且如果模块 B 的依赖关系发生变化,那么也需要修改模块 A 的构造函数,导致代码耦合

二是在复杂项目中,我们在实例化模块 A 时,难以判断模块 B 是否被其他模块依赖而已经实例化过了,从而可能将模块 B 多次实例化。若模块 B 较重或者需要为单例设计,这将带来性能问题。

因此,更好的方式是,将所有模块的实例化交给外层框架,由框架统一管理模块的实例化过程,这样就可以解决上述两个问题。

classA{
constructor(privateb:B){
this.b=b;
}
}

classB{}

classC{
constructor(privatea:A,privateb:B){
this.b=b;
}
}

constb=newB();
consta=newA(b);
constc=newC(a,b);

这种将依赖对象通过外部注入,避免在模块内部实例化依赖的方式,称为依赖注入 (Dependencies Inject, 简称 DI)。这在软件工程中是一种常见的设计模式,我们在 Java 的 Spring,JS 的 Angular,Node 的 NestJS 等框架中都可以看到这种设计模式的应用。

当然,在实际应用中,由于模块众多,依赖复杂,我们很难像上面的例子一样,规划出来每个模块的实例化时机,从而编写模块实例化顺序。并且,许多模块可能并不需要第一时间被创建,需要按需实例化,因此,粗暴的统一实例化是不可取的。

因此我们需要一个统一的框架来分析并管理所有模块的实例化过程,这就是依赖注入框架的作用。

借助于 TypeScript 的装饰器能力,VSCode 实现了一个极为轻量化的依赖注入框架。我们可以先来简单实现一下,解开这个巧妙设计的神秘面纱。

最简依赖注入框架设计


实现一个依赖注入框架只需要两步,一个是将模块声明并注册到框架中进行管理,另一个是在模块构造函数中,声明所需要依赖的模块有哪些。

我们先来看模块的注册过程,这需要 TypeScript 的类装饰器能力。我们在注入时,只需要判断模块是否已经注册,如果没有注册,将模块的 id(这里简化为模块 Class 名称)与类型传入即可完成单个模块的注册。

exportfunctionInjectable():ClassDecorator{
return(Target:Class):any=>{
if(!collection.providers.has(Target.name)){
collection.providers.set(Target.name,target);
}
returntarget;
};
}

之后我们再来看看模块是如何声明依赖的,这需要 TypeScript 的属性装饰器能力。我们在注入时,先判断依赖的模块是否已经被实例化,如果没有,则将依赖模块进行实例化,并存入框架中管理。最终返回已经被实例化完成的模块实例。

exportfunctionInject():PropertyDecorator{
return(target:Property,propertyKey:string)=>{

constinstance=collection.dependencies.get(propertyKey);
if(!instance){
constDependencyProvider:Class=collection.providers.get(propertyKey);
collection.dependencies.set(propertyKey,newDependencyProvider());
}

target[propertyKey]=collection.dependencies.get(propertyKey);
};
}

最后只需要保证框架本身在项目运行前完成实例化即可。(在例子中表示为 injector)

exportclassServiceCollection{
readonlyproviders=newMap();
readonlydependencies=newMap();
}

constcollection=newServiceCollection();
exportdefaultcollection;

这样,一个最简化的依赖注入框架就完成了。由于保存了模块的类型与实例,它实现了模块的按需实例化,无需在项目启动时就初始化所有模块。

我们可以尝试调用它,以上面举出的例子为例:

@injectable()
classA{
constructor(@inject()privateb:B){
this.b=b;
}
}

@injectable()
classB{}

classC{
constructor(@inject()privatea:A,@inject()privateb:B){
this.b=b;
}
}

constc=newC();

无需知晓模块 A,B 的实例化时机,直接初始化任何一个模块,框架会自动帮你找到并实例化好所有依赖的模块。

VSCode 的依赖收集实现


上面介绍了一个依赖注入框架的最简实现。但当我们真正阅读 VSCode 的源码时,我们发现 VSCode 中的依赖注入框架貌似并不是这样消费的。

例如在下面这段鉴权服务中,我们发现该类并没有@injectable()作为类的依赖收集,并且依赖服务也直接用其类名作为修饰器,而不是@inject()。

//srcvsworkbenchservicesauthenticationrowserauthenticationService.ts
exportclassAuthenticationServiceextendsDisposableimplementsIAuthenticationService{
constructor(
@IActivityServiceprivatereadonlyactivityService:IActivityService,
@IExtensionServiceprivatereadonlyextensionService:IExtensionService,
@IStorageServiceprivatereadonlystorageService:IStorageService,
@IRemoteAgentServiceprivatereadonlyremoteAgentService:IRemoteAgentService,
@IDialogServiceprivatereadonlydialogService:IDialogService,
@IQuickInputServiceprivatereadonlyquickInputService:IQuickInputService
){}
}

其实这里的修饰符并不是真正指向类名,而是一个同名的资源描述符 id(VSCode 中称之为 ServiceIdentifier),通常使用字符串或 Symbol 标识。

通过 ServiceIdentifier 作为 id,而不是简单粗暴地通过类名称作为 id 注册 Service,有利于处理项目中一个 interface 可能存在多态实现,需要同时多个同名类实例的问题。

此外,在构造 ServiceIdentifier 时,我们便可以将该类声明注入框架,而无需@injectable()显示调用了。

那么,这样一个 ServiceIdentifier 该如何构造呢?

//srcvsplatforminstantiationcommoninstantiation.ts
/**
*The*only*validwaytocreatea{{ServiceIdentifier}}.
*/
exportfunctioncreateDecorator(serviceId:string):ServiceIdentifier{

if(_util.serviceIds.has(serviceId)){
return_util.serviceIds.get(serviceId)!;
}

constid=function(target:Function,key:string,index:number):any{
if(arguments.length!==3){
thrownewError('@IServiceName-decoratorcanonlybeusedtodecorateaparameter');
}
storeServiceDependency(id,target,index);
};

id.toString=()=>serviceId;

_util.serviceIds.set(serviceId,id);
returnid;
}

//被 ServiceIdentifier 装饰的类在运行时,将收集该类的依赖,注入到框架中。
functionstoreServiceDependency(id:Function,target:Function,index:number):void{
if((targetasany)[_util.DI_TARGET]===target){
(targetasany)[_util.DI_DEPENDENCIES].push({id,index});
}else{
(targetasany)[_util.DI_DEPENDENCIES]=[{id,index}];
(targetasany)[_util.DI_TARGET]=target;
}
}

我们仅需通过createDecorator方法为类创建一个唯一的ServiceIdentifier,并将其作为修饰符即可。

以上面的 AuthenticationService 为例,若所依赖的 ActivityService 需要变更多态实现,仅需修改 ServiceIdentifier 修饰符确定实现方式即可,无需更改业务的调用代码。

exportconstIActivityServicePlanA=createDecorator("IActivityServicePlanA");
exportconstIActivityServicePlanB=createDecorator("IActivityServicePlanB");
exportinterfaceIActivityService{...}

exportclassAuthenticationService{
constructor(
@IActivityServicePlanAprivatereadonlyactivityService:IActivityService,
){}
}

循环依赖问题


模块之间的依赖关系是有可能存在循环依赖的,比如 A 依赖 B,B 依赖 A。这种情况下进行两个模块的实例化会造成死循环,因此我们需要在框架中加入循环依赖检测机制来进行规避。

本质上,一个健康的模块依赖关系就是一个有向无环图(DAG),我们之前介绍过有向无环图在 excel 表格函数中的应用,放在依赖注入框架的设计中也同样适用。

我们可以通过深度优先搜索(DFS)来检测模块之间的依赖关系,如果发现存在循环依赖,则抛出异常。

//src/vs/platform/instantiation/common/instantiationService.ts
while(true){
letroots=graph.roots();

//ifthereisnomorerootsbutstill
//nodesinthegraphwehaveacycle
if(roots.length===0){
if(graph.length!==0){
throwCycleError();
}
break;
}

for(letrootofroots){
//createinstanceandoverwritetheservicecollections
constinstance=this._createInstance(root.data.desc,[]);
this._services.set(root.data.id,instance);
graph.removeNode(root.data);
}
}

该方法通过获取图节点的出度,将该类的全部依赖提取出来作为roots,然后逐个实例化,并从途中剥离该依赖节点。由于依赖树的构建是逐层依赖的,因此按顺序实例化即可。当发现该类的所有依赖都被实例化后,图中仍存在节点,则认为存在循环依赖,抛出异常。

总结


本篇文章简要介绍并实现了一个依赖注入框架,并解析了VSCode在实际问题上做出的一些改进。

实际上 VSCode 的依赖注入能力还有很多细节需要处理。例如异步实例化能力支持,通过封装 Deferred 类取得Promise执行状态,等等,在此就不一一展开了。感兴趣的同学可以参考 VSCode 源码:src/vs/platform/instantiation/common/instantiationService.ts,https://segmentfault.com/a/src/vs/platform/instantiation/common/instantiationService.ts做更进一步的学习。


审核编辑 :李倩


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 源码
    +关注

    关注

    8

    文章

    633

    浏览量

    29134
  • 变量
    +关注

    关注

    0

    文章

    613

    浏览量

    28327
  • vscode
    +关注

    关注

    1

    文章

    154

    浏览量

    7663

原文标题:VS Code 源码深入浅出 -- 依赖注入设计

文章出处:【微信号:玩转VS Code,微信公众号:玩转VS Code】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Microchip发布面向VS Code的MPLAB扩展早期体验版本

    为充分利用Microsoft Visual Studio Code (VS Code) 的多功能性,Microchip Technology(微芯科技公司)发布面向VS
    的头像 发表于 08-28 10:01 512次阅读

    深入浅出系列之代码可读性

    原创声明:该文章是个人在项目中亲历后的经验总结和分享,如有搬运需求请注明出处。 这是“深入浅出系列”文章的第一篇,主要记录和分享程序设计的一些思想和方法论,如果读者觉得所有受用,还请“一键三连
    的头像 发表于 08-09 16:00 233次阅读

    深入浅出谈TDR阻抗测试

    Chrent为什么要测阻抗?计算机、通信系统、视频系统和网络系统等领域的数字系统开发人员正面临着越来越快的时钟频率和数据速率,随之,信号完整性变得越来越重要。在当前的高工作速率下,影响信号上升时间、脉宽、时序、抖动或噪声内容的任何事物都会影响整个系统的性能和可靠性。为保证信号完整性,必须了解和控制信号经过的传输环境的阻抗。阻抗不匹配和不连续会导致反射,增加系
    的头像 发表于 06-06 08:28 5218次阅读
    <b class='flag-5'>深入浅出</b>谈TDR阻抗测试

    深入浅出带你搞懂-MOSFET栅极电阻

    一、MOSFET简介MOSFET是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,属于电压控制电流型元件,是开关电路中的基本元件,其栅极(G极)内阻极高。以N沟道增强型为例,其结构为在一块浓度较低的P型硅上扩散两个浓度较高的N型区作为漏极和源极,半导体表面覆盖二氧化硅绝缘层并引出一个电极作为栅极。由于mos管本身的
    的头像 发表于 05-09 08:10 2.3w次阅读
    <b class='flag-5'>深入浅出</b>带你搞懂-MOSFET栅极电阻

    怎么理解负频率呢?射频人眼中的负频率

    说实话,我对负频率这个概念,也是有点凌乱。不过,最近不是正在看“深入浅出通信原理”嘛,看了一些相关概念。
    的头像 发表于 03-05 16:10 2932次阅读
    怎么理解负频率呢?射频人眼中的负频率

    VS CodeVS Codium之间的区别有哪些?你选哪个?

    VS Codium 是一个 VS Code 的克隆版本,百分之百免费且开源。
    的头像 发表于 02-23 15:28 1541次阅读
    <b class='flag-5'>VS</b> <b class='flag-5'>Code</b>和<b class='flag-5'>VS</b> Codium之间的区别有哪些?你选哪个?

    深入浅出理解三极管

    原文来自原创书籍《硬件设计指南 从器件认知到手机基带设计》: 本小节介绍下三极管的特性,清晰易懂,使用通俗的水流模型加强对三极管的原理记忆,一定比课堂上讲的要形象的多,各位同学要学会类比的方法来加深记忆(比如在介绍相对论中引力扭曲时空的概念时,国外科学家们就用生活中的漩涡,或者在弹性膜中间的重球,来类比星体引力对时空的影响,这样会大大简化我们学习、理解和记忆的过程,这种学习方法被称为类比学习法)。 我们
    的头像 发表于 02-23 08:41 632次阅读
    <b class='flag-5'>深入浅出</b>理解三极管

    Simplicity Studio 5扩增功能支持以VS Code开发

    随着SimplicityStudio 5 (SSv5) 5.6.0.0版本的发布,SiliconLabs(亦称“芯科科技”)已经引入了针对Visual Studio CodeVS Code)作为
    的头像 发表于 01-29 10:34 866次阅读
    Simplicity Studio 5扩增功能支持以<b class='flag-5'>VS</b> <b class='flag-5'>Code</b>开发

    【年度精选】2023年度top5榜单——电机控制资料

    读懂PID控制算法(抛弃公式,从原理上真正理解PID控制) 作者:ben111 下载量:360 推荐理由: 这篇资料从原理上深入浅出地解释了PID控制算法,让读者真正理解其核心思想。摒弃了复杂
    发表于 01-16 14:34

    深入浅出Yolov3和Yolov4

    Yolov3是目标检测Yolo系列非常非常经典的算法,不过很多同学拿到Yolov3或者Yolov4的cfg文件时,并不知道如何直观的可视化查看网络结构。
    的头像 发表于 01-11 10:42 740次阅读
    <b class='flag-5'>深入浅出</b>Yolov3和Yolov4

    深入浅出理解PagedAttention CUDA实现

    vLLM 中,LLM 推理的 prefill 阶段 attention 计算使用第三方库 xformers 的优化实现,decoding 阶段 attention 计算则使用项目编译 CUDA 代码实现。
    的头像 发表于 01-09 11:43 1755次阅读
    <b class='flag-5'>深入浅出</b>理解PagedAttention CUDA实现

    简析控制系统的稳定性判据

    上一篇视频,我们已经对控制系统分析的关键 —— 传递函数进行了深入浅出的介绍(点我穿越回上一期内容)。
    的头像 发表于 01-03 12:37 2831次阅读
    简析控制系统的稳定性判据

    深入浅出地讲解经典轴承故障数据集

    在轴承故障数据集振动信号的时域表示中,通常将时间作为横轴,振动信号的幅值作为纵轴。
    的头像 发表于 12-06 17:30 6708次阅读
    <b class='flag-5'>深入浅出</b>地讲解经典轴承故障数据集

    Spring中依赖注入的四种方式

    在Spring框架中,依赖注入是一种核心的概念和机制。通过依赖注入,我们可以让对象之间的依赖关系更加松散,并且能够方便地进行单元测试和模块化
    的头像 发表于 12-03 15:11 1893次阅读

    javascript深入浅出介绍

    JavaScript是一种广泛使用的脚本语言,用于开发互联网应用程序。它非常受欢迎,因为它可以用于网页开发,服务器端开发以及移动应用程序开发。本文将深入浅出地介绍JavaScript的各个方面,包括
    的头像 发表于 12-03 11:09 5.8w次阅读