0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

大规模推理时代深度学习加速的天花板在哪?

智能计算芯世界 来源:智能计算芯世界 作者:智能计算芯世界 2022-12-15 10:51 次阅读

从数据分析、经典机器学习到搜索、推荐,再到语言处理和图像识别,每个 AI 任务运行的背后都需要海量的数学计算。可以说,AI 真的就是数学,但却是很多很多的数学。 尤其是在 AI 进入大模型时代的当下,模型的大规模训练和推理更是对计算资源有着巨大的需求。但同时,算力的掣肘正在阻碍着 AI 走向大规模落地。 当前 AI 面临的“数学题”都是何种难度?“算珠”又该如何拨弄得更快才能追得上不断增长的计算需求呢? 让我们从 CPU 的 AI 算力谈起。

1

大规模推理时代

深度学习加速的天花板在哪?

人工智能迎来第三次浪潮后,以深度学习为代表的AI已经进入应用阶段。而深度学习 AI 需要进行大量矩阵乘法以训练神经网络模型,并利用推理将这些模型应用于实际任务。

也就是说,深度学习分为训练和推理两个阶段,而推理则是推动AI大规模走向落地的关键。

训练深度学习模型可能需要数小时或数天的算力。而深度学习推理可能需要几分之一秒到几分钟,具体取决于模型的复杂程度和对结果的准确度的要求。在推理过程中,计算机将输入数据与模型进行比较,然后推断数据的含义。

让人工智能落地更多是推理层面的工作,无论是推荐引擎、图像识别、媒体分析、语言翻译 、自然语言处理、强化学习等负载中推理性能的大幅提升对落地应用的贡献都十分重要。

在此背景下,硬件架构将成为AI落地的重中之重。

而做大规模推理,CPU平台具有较大优势——用户学习门槛低、部署速度快等,在类似推荐系统的应用中,CPU也担当着算力支撑,那么如何提升CPU的AI算力?

CPU的算力取决于 CPU 特定加速指令集或运算单元的持续引入及改进,那么通过强化算力单元和增加算力单元数量并举,即Scale-Up与Scale-Out相结合,提升CPU的AI算力。

回望英特尔历代至强 可扩展处理器的深度学习加速技术(即DL Boost),已经将这一提升路径充分实践并拉高优化天花板:从第一代至强可扩展处理器引入的AVX-512——中低端型号每核心配备1个FMA单元、高端型号每核心配备2个FMA单元,到代号Ice Lake-SP的双路第三代至强可扩展处理器将此类配置扩展到全系列产品,并将最高核心数从28增加至40个,CPU的向量处理能力得以大幅提升。

6ac25558-7c19-11ed-8abf-dac502259ad0.png

指令优化方面,第二代英特尔至强 可扩展处理器引入了简称VNNI(Vector Neural Network Instruction,矢量神经网络指令)的扩展,提高了数据格式INT8推理的效率;代号Cooper Lake的第三代英特尔至强可扩展处理器又引入了数据格式bfloat16(BF16)加速功能,可以用于推理和训练。 目前,前三代英特尔至强 可扩展处理器的加速路径,主要依靠现有的计算单元,即AVX-512,配合指令集、算法和数据上的优化,输出AI算力。 但加速的天花板就到此为止了吗?

还有别的思路——内置硬件加速器,且与本就高性能的CPU内核无缝配合,叠加buff推高天花板。

2

硬件直接“贴贴”加速

第四代至强内置多种专用加速器

在今年11月,英特尔宣布将在2023年1月11日发布代号为Sapphire Rapids的全新第四代英特尔至强 可扩展处理器。

Sapphire Rapids将为广泛的标量和并行工作负载提供跨越式的性能提升,更重要的是,它的基本架构旨在实现弹性计算模型(如容器化微服务)的突破性性能,以及在所有形式的以数据为中心的计算中快速扩展 AI 的使用。

第四代英特尔至强可扩展处理器的核心数量有显著增长,并支持DDR5、PCIe 5.0和CXL 1.1等下一代内存和接口标准,在内置硬件加速上,Sapphire Rapids也集成了5项加速器:

用于AI的高级矩阵扩展(Advanced Matrix Extensions),简称AMX;

用于数据分析的存内分析加速器(In-Memory Analytics Accelerator),简称IAA;

用于5G/网络的数据流加速器(Data Streaming Accelerator),简称DSA;

用于存储的动态负载均衡器(Dynamic Load Balancer),简称DLB;

用于数据压缩和加解密的QuickAssist技术,英特尔数据保护与压缩加速技术,简称QAT。

首先,内置加速器可以消除在将数据从 CPU 移至协处理器加速器时产生的大部分开销。

同时,Sapphire Rapids还引入了加速器接口架构 (AIA),解决了无缝集成加速引擎和高性能核心时面临的关键挑战——能够处理 CPU 内核与内置加速器之间的数据高效调度、同步和信令传递,而不是高开销内核模式。

内置的硬件加速器也易获得更出色的性能,而不必将时间浪费在进行片外传输设置上。

AMX与上述其他4个加速器的一大区别,就是它本身就集成在了CPU核心内,与AVX-512一样,随核心数同步增长,线性提升处理能力。

3

开启全新计算单元

AMX升维加速深度学习工作负载

AMX与AVX-512又有什么区别?

AMX是全新的计算单元,有自己的存储和操作电路,并行度高,以便为AI工作负载加速Tensor运算,支持bfloat16和INT8两种数据类型。

Tensor处理是深度学习算法的核心,AMX功能可以实现每个循环2000次int8运算和1000次bfloat16运算。

同时,AMX的寄存器(名为Tile)是二维的,寄存器组是三维的,均比AVX-512高一个维度,寄存器组存储的数据相当于一个小型矩阵,这样AMX 能够在每个时钟周期执行更多矩阵乘法以每时钟周期来看。

理论上,AMX的TMUL(矩阵乘法运算)对AVX-512的2个FMA(融合乘加操作)单元,INT8性能高达8倍;处理浮点数据,AMX使用动态范围与FP32相当的BF16,性能可达AVX-512的16倍。

如此,有全新可扩展二维寄存器文件和全新矩阵乘法指令,可增强各种深度学习工作负载中推理及训练性能,也就代表着计算能力的大幅提升,这些计算能力可以通过行业标准框架和运行时无缝访问。

据今年1月数据表明,基于TensorFlow框架,INT8 精度下每秒检测的图像的数量增幅以及高达 6 倍多 BF16 精度下进行对象检测时每秒检测的图像的数量增幅明显增加:

56核的第四代英特尔 至强可扩展处理器全新的AMX,对比40核的第三代英特尔 至强可扩展处理器,在SSD-ResNet34上进行实时推理时,每秒处理的图像数量增加高达4.5倍。(注:实际性能受使用情况、配置和其他因素的差异影响,且性能测试结果基于配置信息中显示的日期进行的测试[1])

当然AVX-512本身就以FP32、FP64等高精度浮点数据的运算见长,依然可以专注于如数据分析、科学计算、经典机器学习等高精度计算。

如今第三代人工智能浪潮是以深度学习为代表,并非只有深度学习,AI的范围正在不断扩大,计算需求也在多元化,当人工智能的工作负载出现混合精度计算需求,AMX和AVX-512就可搭配使用,发展各自长处。

对于数据精度不高但要求高准确度的推理场景,如图像识别、推荐引擎、媒体分析、语言翻译、自然语言处理(NLP)、强化学习等典型AI应用场景,AMX其实属于降维打击,可发挥空间很大。

根据预告,英特尔第四代至强可扩展处理器是处理AI等更现代化、更新兴并行工作负载的基础设施,在进行整体设计时也考虑到了未来技术发展趋势——绝大多数新的可扩展服务将采用容器化微服务等弹性计算模型进行开发。

新版Windows、Linux Kernel和虚拟化软件也确实都具备支持AMX指令集的条件,所谓“引领”就是要更先一步到达未来。

1月11号,让我们期待至强新品的发布和更多信息吧~可以先点击阅读原文,提前了解至强产品组合~

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10873

    浏览量

    212042
  • 人工智能
    +关注

    关注

    1791

    文章

    47354

    浏览量

    238792
  • 算力
    +关注

    关注

    1

    文章

    985

    浏览量

    14845

原文标题:明年1月,推高CPU人工智能算力天花板

文章出处:【微信号:AI_Architect,微信公众号:智能计算芯世界】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    游戏体验天花板,一加 Ace 5 系列售价 2299 元起

    2024年12月26日,一加正式发布游戏体验天花板一加Ace5系列——一加Ace5及一加Ace5Pro。一加Ace5系列深度聚焦性能和游戏体验,搭载骁龙8系旗舰平台和行业首个自研芯片级游戏技术「风驰
    的头像 发表于 12-27 10:19 247次阅读
    游戏体验<b class='flag-5'>天花板</b>,一加 Ace 5 系列售价 2299 元起

    NPU在深度学习中的应用

    设计的硬件加速器,它在深度学习中的应用日益广泛。 1. NPU的基本概念 NPU是一种专门针对深度学习算法优化的处理器,它与传统的CPU和G
    的头像 发表于 11-14 15:17 642次阅读

    使用EMBark进行大规模推荐系统训练Embedding加速

    推荐系统是互联网行业的核心系统,如何高效训练推荐系统是各公司关注的核心问题。目前,推荐系统基本上都是基于深度学习大规模 ID 类模型,模型包含数十亿甚至数百亿级别的 ID 特征,典型结构如图 1 所示。
    的头像 发表于 10-31 14:46 210次阅读
    使用EMBark进行<b class='flag-5'>大规模</b>推荐系统训练Embedding<b class='flag-5'>加速</b>

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是
    的头像 发表于 10-27 11:13 407次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速
    的头像 发表于 10-25 09:22 241次阅读

    深度学习GPU加速效果如何

    图形处理器(GPU)凭借其强大的并行计算能力,成为加速深度学习任务的理想选择。
    的头像 发表于 10-17 10:07 205次阅读

    使用OpenVINO C++在哪吒开发推理Transformer模型

    OpenVINO 是一个开源工具套件,用于对深度学习模型进行优化并在云端、边缘进行部署。它能在诸如生成式人工智能、视频、音频以及语言等各类应用场景中加快深度学习
    的头像 发表于 10-12 09:55 350次阅读
    使用OpenVINO C++<b class='flag-5'>在哪</b>吒开发<b class='flag-5'>板</b>上<b class='flag-5'>推理</b>Transformer模型

    【「大模型时代的基础架构」阅读体验】+ 第一、二章学习感受

    如下图所示。无论是CPU还是GPU,所有运算过程的中间结果都需要被保存到内存中,而TPU根本没有将中间结果保存到内存中,而是在执行完毕后直接将中间结果传递给下一步骤,因此TPU是一种加速大规模矩阵运算
    发表于 10-10 10:36

    《黑神话:悟空》8月20日发售,海信电视Mini LED电视天花板中板现身!

    更是摩拳擦掌、跃跃欲试。作为《黑神话:悟空》官方全球合作伙伴,海信电视在8月开启“宠粉月”,通过社交媒体、电商平台等线上渠道,并联动线下门店和体验活动,为玩家们解锁游戏的酣畅体验与多重心动好礼。 Mini LED电视天花板中板现身,神秘豪礼送不停 作
    的头像 发表于 08-19 17:15 440次阅读

    新品速递 | TOF反射型光电,突破检测距离天花板

    新品速递 | TOF反射型光电,突破检测距离天花板
    的头像 发表于 08-13 08:24 372次阅读
    新品速递 | TOF反射型光电,突破检测距离<b class='flag-5'>天花板</b>

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来
    发表于 07-29 17:05

    深度学习编译器和推理引擎的区别

    深度学习编译器和推理引擎在人工智能领域中都扮演着至关重要的角色,但它们各自的功能、应用场景以及优化目标等方面存在显著的差异。以下是对两者区别的详细探讨。
    的头像 发表于 07-17 18:12 1275次阅读

    深度学习模型量化方法

    深度学习模型量化是一种重要的模型轻量化技术,旨在通过减少网络参数的比特宽度来减小模型大小和加速推理过程,同时尽量保持模型性能。从而达到把模型部署到边缘或者低算力设备上,实现降本增效的目
    的头像 发表于 07-15 11:01 499次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型量化方法

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度
    的头像 发表于 07-05 09:47 959次阅读

    【大语言模型:原理与工程实践】揭开大语言模型的面纱

    ,大语言模型还具备出色的关联和关系理解能力,能够捕捉数据间的隐含关系和语义联系,进行高级关联推理。它还支持多步推理,能在推理过程中进行多个步骤的演绎和分析。最后,通过学习
    发表于 05-04 23:55