0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用LTspice为LED驱动器生成波特图

星星科技指导员 来源:ADI 作者:Keith Szolusha and Br 2022-12-16 11:19 次阅读

作者:Keith Szolusha and Brandon Nghe

闭环增益和相位图是用于确定稳定性的常用工具 开关稳压器中的控制回路。增益和相位测量,当 如果做得好,需要访问并熟悉花哨的网络分析仪。这 测量包括断开控制环路、注入噪声和测量 频率扫描过程中产生的增益和相位(见图1)。这种做法 测量控制环路很少应用于LED驱动器。

LED驱动器控制环路相位和增益测量需要不同的方法 (参见图1)—与典型电阻分压器路径至GND电压的偏差 调节器注入和测量点。在这两种情况下,台式控制回路 相位和增益测量是保证稳定性的最佳方法,但不是 每个工程师都触手可及所需的设备并访问 经验丰富的工厂应用程序团队。这些工程师是做什么的?

一种选择是构建LED驱动器,看看它如何响应瞬变。短暂的 响应观察需要应用板和更常见的台式 设备。瞬态分析的结果缺乏波特图基于频率的 增益和相数(可用于保证稳定性)但它们可以 作为一般控制回路稳定性和速度的指示。

信号瞬变可用于检查绝对偏差和系统 响应时间。瞬态扰动的形状表示相位 或增益裕量,因此可用于了解一般环路稳定性。为 例如,临界阻尼响应可能表示相位裕量为 45° 至 60°。 或者,瞬态期间的大尖峰可能表明需要更多的 COUT 或 af aster 环路。较长的建立时间可能表明需要加快带宽 (和交越频率)的环路。这些相对容易的系统检查 实现开关稳压器控制环路的动态检定,但 更深入的分析需要增益和相位波特图。

LTspice仿真可用于生成两个开关稳压器输出 组装或制造电路之前的瞬态和波特图。这可以 帮助大致了解控制环路稳定性 - 补偿元件选择和输出电容尺寸的起点。使用LTspice的过程 基于米德尔布鲁克在 1975 年的原始建议是有据可查的(见 “LTspice:生成SMPS波特图的基本步骤”)。®1Middlebrook方法中列出的实际信号注入位置现在并不常用。 但经过多年的调整,导致常用注射 位置如图1a所示。

此外,LED驱动器,具有高边检测电阻和复杂的交流电 电阻LED负载,应该具有与今天不同的注入点 反馈路径中的注入点或米德尔布鲁克的原始建议, 一个以前在LTspice中没有证明过。这里介绍的方法显示 如何生成LED驱动器电流检测反馈环路 LTspice中的波特图, 在实验室里。

生成控制环路波特图

标准开关稳压器控制环路波特图产生三个关键测量值,可用于确定稳定性和速度:

相位裕量

交越频率(带宽)

获得保证金

人们普遍认为,需要 45° 至 60° 的相位裕量才能稳定 系统,并且需要–10 dB增益裕量才能保证环路稳定性。交越频率与一般环路速度有关。图 1 显示了设置 用于使用网络分析仪进行这些测量。

poYBAGOb472ADbtjAAEK1aHYgGs100.jpg?h=270&hash=636D5DBBE48C5F2B38A6E74F34126ABE&imgver=2

图1.使用网络分析仪对 (a) 稳压器和 (b) LED 驱动器进行开关稳压器控制环路波特图测量。为了进行测量,控制环路断开,正弦扰动推入高阻抗路径,同时测量由此产生的控制环路增益和相位,使设计人员能够量化环路的稳定性。

LTspice仿真可用于在 LED 的控制回路。图 2 示出了具有理想 给定频率(F)的正弦波直接注入反馈路径 负检测线 (ISN)。测量点 A、B 和 C 用于计算 注入频率(f)处的增益(dB)和相位(°)。为了绘制图表 在整个控制环路波特图中,必须在 大频率扫描,停在fSW/2(开关频率的一半 转换器)。

pYYBAGOb47-AQz_JAAGu0zLJZhQ131.jpg?h=270&hash=20F8F7E0B0FF05D0909587EC48D62E74&imgver=3

图2.LT3950 DC2788A 演示电路 LED 驱动器 LTspice 型号,具有控制环路噪声注入和测量点。

图2中A、B和C点的测量决定了增益和相位 注射频率(f)的控制回路。不同的注射频率 产生不同的增益和相位。为简单起见,并了解其工作原理,可以 设置注入频率并测量A-C和B-C的增益和相位。这 产生控制环路波特图的单个频率点。图 3a 和 3b 显示10 kHz±10 mV AC注入的增益和相位。图 3c 和 3d 显示 增益和相位为 40 kHz±10 mV 交流注入。

频率扫描以及增益和相位测量 B-C 和 A-C 构成了整个闭环波特图。如中所述 摘要,这通常是在工作台上使用花式(即, 昂贵)网络分析仪。在LTspice中也可以进行这样的扫描,如图所示。 在图 4 中。这些结果通过与 使用网络分析仪进行台式测试(见图8)。

pYYBAGOb48KAT_hsAAQO9yatng8938.jpg?h=270&hash=CB24AB592F163468E94E5F4C78A8ADEC&imgver=2

图3.图2中A、B和C点的测量决定了注入频率(f)下控制环路的增益和相位。不同的注入频率产生不同的增益和相位。图3a和3b显示了10 kHz±10 mV AC注入的增益和相位。图3c和3d显示了40 kHz±10 mV AC注入的增益和相位。频率扫描以及B-C和A-C之间的增益和相位测量构成了闭环波特图。

poYBAGOb48WAdqHBAAF4uvJoA5c105.jpg?h=270&hash=09FEED000C140722E481C70D8A53CA07&imgver=2

图4.LT3950 在 LTspice 中进行的波特图测量显示增益 (实线) 和相位 (虚线)。

在LTspice中进行全增益和相位扫描以及绘图

要在LTspice中为控制环路创建完整的波特图,即增益和相位的图形扫描,请执行以下步骤。

步骤 1:创建 AC 注入源

在LTspice中,插入±10 mV AC注入电压源和注入电阻以及标签节点A、B和C,如图2所示。交流电压源值SINE(0 10m {Freq})设置10 mV峰值并扫描频率。用户可以在1 mV至20 mV之间使用峰值正弦值。请记住,许多LED驱动器的检测电压为250 mV和100 mV。较高的注入噪声会产生LED电流调节误差。

第 2 步:添加数学运算

在原理图上插入 .measure 语句作为 .sp (SPICE) 指令。这些指令执行傅里叶变换,并以dB和相位计算LED驱动器的复杂开环增益和相位。

以下是指令:

.measure Aavg avg avg V(a)-V(c)

.measure Bavg avg v(b)-V(c)

.measure Are avg (V(a)-V(c)-Aavg)*cos(360*time*Freq)

.measure Aim avg -(V(a)-V(c)-Aavg)*sin(360*time*Freq)

.measure Bre avg (V(b)-V(c)-Bavg)*cos(360*time*Freq)

.measure Bim avg -(V(b)-V(c)-Bavg)*sin(360*time*Freq)

.measure GainMag param 20*log10(hypot(Are,Aim) / hypot(Bre,Bim))

.measure GainPhi param mod(atan2(Aim, Are) - atan2(Bim, Bre)+180,360)-180

第 3 步:设置测量参数

还需要一些小指令。首先,电路必须处于稳定状态 的模拟(过去启动),以便进行适当的测量。调整 t0,或测量的开始时间和停止时间。开始时间可以是 通过启动模拟和观察启动来估计或获得 时间。在稳定状态为 已达到 — 通过对每个频率平均超过 10 个周期来减少误差。

以下是指令:

.param t0=0.2m

.tran 0 {t0+10/freq} {t0} startup

.step oct param freq 1K 1M 3

步骤 4:设置频率采样步长和范围

.step 命令设置执行分析的频率分辨率和范围。在本例中,仿真运行范围为 1 kHz 至 1 MHz,使用 每倍频程三分的分辨率。波特图测量值准确 最高为fSW/2,因此频率上限应设置为开关的一半 系统的频率。显然,更多的点可以提高分辨率,但是 模拟需要更长的时间。每倍频程三分是分辨率的低端,但 以最低分辨率运行仿真可以节省一些时间。不过 从整体设计周期来看,5 分钟的模拟是 比设计、组装和测试 PCB 快得多。有了这个 请注意,您可能只想以更高的分辨率运行,例如五个或更多点 每个八度,以产生更完整、更易于查看的结果。

步骤 5:运行模拟

这看起来很简单,但LTspice需要多个生产步骤来 生成波特图。第一步是运行模拟,这不会产生 (尚未)图,而是显示正常的示波器电压和电流测量值。 按照后续步骤生成波特图。

步骤 6:生成波特图

打开 SPICE 错误日志,方法是右键单击原理图窗口并选择绘制 .step'ed .meas 数据。从“打印设置”菜单中选择可见迹线”,然后选择“增益”以绘制数据。可选地,可以导出测量数据 通过单击文件并选择将数据导出为文本以生成 CSV 文件 波特数据。

使用网络分析仪确认波特图 — 超越仿真

控制回路的模拟不如真实的东西可靠,不应该 用于完全保证循环稳定性和裕量。在某个阶段 设计过程中,控制回路应在实验室中使用网络进行验证 分析器工具。

LTspice中生成的波特图可以与网络分析仪波特进行比较 绘制测量结果。就像仿真一样,通过将噪声注入反馈回路并测量和 处理 A-B 和 A-C 增益和相位。测量设置示意图 和照片如图 5 到图 7 所示。

pYYBAGOb48eATV6fAAF_9ppHo3k629.jpg?h=270&hash=9F8D65DFC5EF269B8CAA9276208B4B93&imgver=2

图5.使用网络分析仪设置LED驱动器控制回路波特图测量。

poYBAGOb48uAbHaJAAEZqFlzJGE390.jpg?h=270&hash=EA0813EE8DD6CBE0D82A3B899E822416&imgver=2

图6.Venable 系统 5060A 型老式网络分析仪,用于 LED 驱动器的高边浮动噪声注入和测量。

pYYBAGOb482AKYD8AAOw2ODgkVE799.jpg?h=270&hash=AA4229FF9A59292E977C206BD9B295DD&imgver=2

图7.LT3950 LED 驱动器上的噪声注入和测量点。

pYYBAGOb48-AHLRIAAFjBmgTx0A689.jpg?h=270&hash=EC2B4F856D8840D111FC4B49E847317C&imgver=2

图8.DC2788A 演示电路上 LT3950 LED 驱动器的波特图。通过LTspice仿真生成的图(蓝线)与使用网络分析仪生成的图(绿线)具有很强的相关性。

测试设置 交越频率(千赫) 增益裕量(分贝) 相位裕量 (°)
网络分析仪,8 V在 16.75 17.47 83.96
LTspice, 8 V在 15.8 13.79 71.23
网络分析仪,12 V在 30.41 18.71 83.73
LTspice, 12 V在 47.36 5.04 62.29

LTspice仿真结果表明与网络分析仪数据具有很强的相关性, 证明LTspice是LED驱动器设计中的有用工具——产生粗糙的 基线,以帮助工程师缩小组件选择范围。这 较低频率下的增益和相位紧随硬件,较高频率下的仿真和硬件数据之间的差异更大。这可能会 代表高频极点、零点、寄生建模的挑战 电感、电容和等效串联电阻。

结论

LTspice建模可用于测量控制环路增益和相位,因此 为 LED 驱动器生成波特图。LTspice仿真的精度 数据取决于所使用的SPICE模型的准确性,尽管要小心 对每个组件进行建模以解释实际行为是有代价的 增加的模拟时间。出于LED驱动器设计的目的,LTspice数据 对于相对快速地缩小组件范围和预测很有用 即使没有完美的组件建模,也能实现一般电路行为。一个工作 仿真有助于在过渡到硬件之前指导设计工程师 实施,节省整体设计时间。一次粗略的组件选择 已经完成,使用带有网络分析仪的内置板进行测量可以 确认或对比仿真结果,作为硬件验证的一种手段 在开发过程中。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 驱动器
    +关注

    关注

    53

    文章

    8259

    浏览量

    146632
  • 开关稳压器
    +关注

    关注

    4

    文章

    801

    浏览量

    73492
  • led驱动器
    +关注

    关注

    12

    文章

    1132

    浏览量

    72866
收藏 人收藏

    评论

    相关推荐

    如何使用LTspiceLED驱动器生成波特

    LTspice 建模可用于测量控制环路增益和相位,从而为 LED 驱动器生成波特
    发表于 07-01 14:56 2997次阅读
    如何使用<b class='flag-5'>LTspice</b><b class='flag-5'>为</b><b class='flag-5'>LED</b><b class='flag-5'>驱动器</b><b class='flag-5'>生成</b><b class='flag-5'>波特</b><b class='flag-5'>图</b>

    汽车照明应用选择HB LED驱动器

    汽车照明应用选择HB LED驱动器:摘要:本文讨论了如何针对汽车照明应用合理选择HB LED驱动器,介绍了不同类型的HB
    发表于 09-30 20:22 19次下载

    什么是led驱动器

    什么是led驱动器 LED驱动器驱动发光二极管的器件。 led
    发表于 01-19 23:20 3510次阅读
    什么是<b class='flag-5'>led</b><b class='flag-5'>驱动器</b>

    汽车照明应用选择HB LED驱动器

    汽车照明应用选择HB LED驱动器 摘要:本文讨论了如何针对汽车照明应用合理选择HB LED驱动器,介绍了不同类型的HB
    发表于 06-19 08:52 755次阅读
    <b class='flag-5'>为</b>汽车照明应用选择HB <b class='flag-5'>LED</b><b class='flag-5'>驱动器</b>

    MAX16804高亮度LED驱动器原理

    用于汽车尾灯(STOP和TAIL模式)的LED驱动器可以简单地利用线性LED驱动器IC(例如:MAX16804)实现,只需极少的外部元件。
    发表于 12-11 21:33 1001次阅读
    MAX16804高亮度<b class='flag-5'>LED</b><b class='flag-5'>驱动器</b>原理<b class='flag-5'>图</b>

    MAX16834构成的LED驱动器电路原理

    MAX16834构成的LED驱动器电路原理 2. LED驱动器
    发表于 04-23 08:51 1437次阅读
    MAX16834构成的<b class='flag-5'>LED</b><b class='flag-5'>驱动器</b>电路原理<b class='flag-5'>图</b>

    LED驱动器的分类

      实际应用中LED驱动器按照工作特点可以分为两大类:直流供电的驱动器和交流供电的驱动器。   (一
    发表于 10-21 17:23 4379次阅读

    LED视频显示驱动器电路

    LED视频显示驱动器电路如下图所示:
    发表于 07-18 16:36 1943次阅读
    <b class='flag-5'>LED</b>视频显示<b class='flag-5'>驱动器</b>电路<b class='flag-5'>图</b>

    LED吸顶灯驱动器1电路

    LED吸顶灯驱动器1电路
    发表于 02-08 17:07 44次下载

    LED吸顶灯驱动器2电路

    LED吸顶灯驱动器2电路
    发表于 02-08 17:18 36次下载

    LED吸顶灯驱动器3电路

    LED吸顶灯驱动器3电路
    发表于 02-08 17:26 65次下载

    LED吸顶灯驱动器4电路

    LED吸顶灯驱动器4电路
    发表于 02-08 17:28 118次下载

    如何使用LTspice生成波特

    电路的频率响应可以用LTspice模拟。借助这款功能强大的模拟电路仿真软件,时域中的信号也可以转换为频域。此外,还可以执行小信号分析和蒙特卡罗模拟。由于其与SPICE的兼容性,LTspice可以处理许多电子元件。®
    的头像 发表于 12-16 14:10 7503次阅读
    如何使用<b class='flag-5'>LTspice</b><b class='flag-5'>生成</b><b class='flag-5'>波特</b><b class='flag-5'>图</b>

    led驱动器输出电流大有什么影响

    LED驱动器是将电源电压转换为适合LED工作的电流的设备。LED驱动器的输出电流大小对LED的工
    的头像 发表于 02-27 17:37 3142次阅读

    LED驱动器常见故障解决

    LED提供稳定的电流和电压,以确保LED的高效和安全运行。LED驱动器可以是恒流的,也可以是恒压的,但大多数现代
    的头像 发表于 10-14 17:39 1778次阅读