0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

以RISC-V架构的D1 Dock Pro和D1 Nezha开发板

芯片开放社区 来源:玄铁杯第二届RISC-V应用创 作者:玄铁杯第二届RIS 2022-12-19 10:20 次阅读

本项目以RISC-V架构的D1 Dock Pro和D1 Nezha开发板为硬件平台,应用物联网区块链技术,设计开发一套分布式能源智慧管理小型示范系统,在该系统上实现能源生产和消费数据的实时监测。该项目在“玄铁杯第二届RISC-V应用创新大赛”活动中荣获一等奖。

关于分布式能源智慧管理和M2M交易系统的技术细节,请看本文详细介绍。

01项目介绍

能源和环保是关乎人类未来的重要课题。为实现碳中和目标,大力发展可再生清洁能源以替代传统化石能源,提高能源系统监控和消费的智能化水平,是可行的重要途径之一。本项目以RISC-V架构的D1 Dock Pro和D1 Nezha开发板为硬件平台,应用物联网和区块链技术,设计开发一套分布式能源智慧管理小型示范系统,在该系统上实现能源生产和消费数据的实时监测。

02技术方案

项目使用 D1 Dock Pro 开发板设计开发一款专用网关,实时采集电池控制器、气象环境传感器等其它传感器的数据,并通过无线通信方式(WiFi)以HTTP协议或MQTT协议将传感器数据上传至物联网后台。

17570832-7f43-11ed-8abf-dac502259ad0.jpg  

图1.专用网关示意

1791faaa-7f43-11ed-8abf-dac502259ad0.jpg

图2.专用网关实物图

智能开关用于能源消费端,实现对能源消费者(电器负载)的供电控制、电能消费数据的采集和传输等功能。该智能开关基于 D1 Dock Pro 开发板进行设计开发,通过开发板的I/O口控制继电器、UART接收电能计量模块的数据。设计一个扩展电路板与开发板配合使用,扩展电路板集成电能计量模块、继电器等。本文设计的智慧开关的功能主要是控制电器开关与计量电器用电参数以及环境参数并上传到云端服务器。

17c2c180-7f43-11ed-8abf-dac502259ad0.jpg

图3.智能开关示意图

17f22718-7f43-11ed-8abf-dac502259ad0.jpg

图4.智能开关实物图

03核心业务代码

3.1智能开关电能采集分析

// sensor variable
float sensor_data[9] = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9};
int recv_cmd; 
unsigned long Voltage_data, Current_data, Power_data, Energy_data, Pf_data, CO2_data, HZ;

// read the consumer date
void read_consumer_data(void)
{

//send the instruction
unioncrc_data
{
unsigned int word16;
unsigned char byte[2];
} crc_now;

tx_buffer[0] = 0x01;
tx_buffer[1] = 0x03;
tx_buffer[2] = 0x01;
tx_buffer[3] = 0x00;
tx_buffer[4] = 0x02;
tx_buffer[5] = 0x08;
crc_now.word16 = chk_crc(tx_buffer, 6);
tx_buffer[6] = crc_now.byte[1];//CRC verification
tx_buffer[7] = crc_now.byte[0];

ret = csi_uart_send_async(&g_uart, tx_buffer,8);
//wait until send finished
while(1) {
if (tx_async_flag) {
tx_async_flag = 0;
break;
}
}

printf("send succeed
");
   ret = csi_uart_receive_async(&g_uart, rx_buffer, 1);
   //wait until receieve  finished
   while(1) {
//   printf("not_receieved
");
   aos_msleep(200);
     if (rx_async_flag) {
         break;
     }
   }


  printf("Line 358: got data");
  parse_data();
  publish_sensor_data(client, "publish");
  
}

//analyze the consumer date
void parse_data(void)
{
csi_error_t ret;
unsigned char i;
union crc_data
{
unsigned int word16;
unsigned char byte[2];
} crc_now;

if (rx_async_flag == 1){ // check if receieve finished
rx_async_flag = 0;
if ((rx_buffer[0] == 0x01)) { //check the ID of the device
crc_now.word16 = chk_crc(rx_buffer, recieve_data_num - 2);//crc verification
if ((crc_now.byte[0] == rx_buffer[recieve_data_num - 1]) && (crc_now.byte[1] == rx_buffer[recieve_data_num - 2])) {
//parse voltage
Voltage_data = (((unsigned long)(rx_buffer[3])) << 24) | (((unsigned long)(rx_buffer[4])) << 16) | (((unsignedlong)(rx_buffer[5])) << 8) | rx_buffer[6];
sensor_data[0] = (float)(Voltage_data * 0.0001);

//parse current
Current_data = (((unsigned long)(rx_buffer[7])) << 24) | (((unsigned long)(rx_buffer[8])) << 16) | (((unsignedlong)(rx_buffer[9])) << 8) | rx_buffer[10];
sensor_data[1] = (float)(Current_data * 0.0001);

//parse power
Power_data = (((unsignedlong)(rx_buffer[11])) << 24) | (((unsigned long)(rx_buffer[12])) << 16) | (((unsignedlong)(rx_buffer[13])) << 8) | rx_buffer[14];
sensor_data[2] = (float)(Power_data * 0.0001);

//parse energy
Energy_data = (((unsignedlong)(rx_buffer[15])) << 24) | (((unsigned long)(rx_buffer[16])) << 16) | (((unsignedlong)(rx_buffer[17])) << 8) | rx_buffer[18];
sensor_data[3] = (float)(Energy_data * 0.0001);

//parse power factor
Pf_data = (((unsignedlong)(rx_buffer[19])) << 24) | (((unsigned long)(rx_buffer[20])) << 16) | (((unsignedlong)(rx_buffer[21])) << 8) | rx_buffer[22];
sensor_data[4] = (float)(Pf_data * 0.001);

//parse CO2
CO2_data = (((unsigned long)(rx_buffer[23])) << 24) | (((unsigned long)(rx_buffer[24])) << 16) | (((unsignedlong)(rx_buffer[25])) << 8) | rx_buffer[26];
sensor_data[5] = (float)(CO2_data * 0.0001);

//parse frequency of the Single phase alternating current
HZ = (((unsigned long)(rx_buffer[31])) << 24) | (((unsigned long)(rx_buffer[32])) << 16) | (((unsignedlong)(rx_buffer[33])) << 8) | rx_buffer[34];
sensor_data[6] = (float)(HZ * 0.01);

} else {
printf("CRC_error
");
}
}

} else {
printf("receieve_not_finished
");
  }
}
// EOF uart

3.2MQTT电能数据上云

// mqtt 
char pub_topic[] = "wattnode/data"; 
char sub_topic[] = "wattnode/cmd"; 
mqtt_client_t *client;
int is_mqtt_ready = 0;

void mqtt_do_connect(mqtt_client_t *client);
static void mqtt_incoming_data_cb(void *arg, const u8_t *data, u16_t len, u8_t flags);
void publish_sensor_data(mqtt_client_t *client, void *arg);

/* Called when publish is complete either with sucess or failure */
static void mqtt_pub_request_cb(void *arg, err_t result)
{
  if(result != ERR_OK) {
    printf("Publish result: %d
", result);
  }
}

/* The idea is to demultiplex topic and create some reference to be used in data callbacks
   Example here uses a global variable, better would be to use a member in arg
   If RAM and CPU budget allows it, the easiest implementation might be to just take a copy of
   the topic string and use it in mqtt_incoming_data_cb
*/
static int inpub_id;
static void mqtt_incoming_publish_cb(void *arg, const char *topic, u32_t tot_len)
{
  printf("Incoming publish at topic %s with total length %u
", topic, (unsigned int)tot_len);

  /* Decode topic string into a user defined reference */
  if(strcmp(topic, "print_payload") == 0) {
    inpub_id = 0;
  } else if(topic[0] == 'A') {
    /* All topics starting with 'A' might bwhile(1)e handled at the same way */
    inpub_id = 1;
  } else {
    /* For all other topics */
    inpub_id = 2;
  }
}

static void mqtt_sub_request_cb(void *arg, err_t result)
{
  /* Just print the result code here for simplicity, 
     normal behaviour would be to take some action if subscribe fails like 
     notifying user, retry subscribe or disconnect from server */
    printf("Subscribe result: %d
", result);
}

static void mqtt_connection_cb(mqtt_client_t *client, void *arg, mqtt_connection_status_t status)
{
  err_t err;
  if(status == MQTT_CONNECT_ACCEPTED) {
    printf("mqtt_connection_cb: Successfully connected
");
    
    /* Setup callback for incoming publish requests */
    mqtt_set_inpub_callback(client, mqtt_incoming_publish_cb, mqtt_incoming_data_cb, arg);
    
    /* Subscribe to a topic named "subtopic" with QoS level 1, call mqtt_sub_request_cb with result */ 
    err = mqtt_subscribe(client, sub_topic, 1, mqtt_sub_request_cb, arg);

    if(err != ERR_OK) {
      printf("mqtt_subscribe return: %d
", err);
    }

    printf("ready to read data");

    is_mqtt_ready = 1;

  } else {
    printf("mqtt_connection_cb: Disconnected, reason: %d
", status);
    
    /* Its more nice to be connected, so try to reconnect */
    mqtt_do_connect(client);
  }  
}

static void mqtt_incoming_data_cb(void *arg, const u8_t *data, u16_t len, u8_t flags)
{
  printf("Incoming publish payload with length %d, flags %u
", len, (unsigned int)flags);

  if(flags & MQTT_DATA_FLAG_LAST) {
    /* Last fragment of payload received (or whole part if payload fits receive buffer
       See MQTT_VAR_HEADER_BUFFER_LEN)  */

    /* Call function or do action depending on reference, in this case inpub_id */
    if(inpub_id == 0) {
      /* Don't trust the publisher, check zero termination */
      if(data[len-1] == 0) {
        //printf("mqtt_incoming_data_cb: %s
", (const char *)data);
      }
    } else if(inpub_id == 1) {
      /* Call an 'A' function... */
    } else {
    //   printf("mqtt_incoming_data_cb: Ignoring payload...
");
        // printf("mqtt_incoming_data_cb: %s
", (const char *)data);
        recv_cmd = atoi((const char *)data);



        printf("receive data: %d
", recv_cmd);
    
    }
  } else {
    /* Handle fragmented payload, store in buffer, write to file or whatever */
  }
}

void publish_sensor_data(mqtt_client_t *client, void *arg)
{
    err_t err;
    u8_t qos = 0; /* 0 1 or 2, see MQTT specification */
    u8_t retain = 0; /* No don't retain such crappy payload... */

    const int LEN = 9;
    // cat all float data to string
    char sep = ';';
    // char *prefix = "data=";
    char *prefix = "";
    char _str_data[10];
    char post_str[128];

    strcpy(post_str, prefix);
    for (int i = 0; i < LEN-1; i++) {
        sprintf(_str_data, "%.3f", sensor_data[i]);
        _str_data[strlen(_str_data)-1] = sep;
        strcat(post_str, _str_data);
    }

    sprintf(_str_data, "%.3f", sensor_data[LEN-1]);
    strcat(post_str, _str_data);

    err = mqtt_publish(client, pub_topic, post_str, strlen(post_str), qos, retain, mqtt_pub_request_cb, arg);
    if(err != ERR_OK) {
        printf("Publish err: %d
", err);
    }
}

void mqtt_do_connect(mqtt_client_t *client)
{
    struct mqtt_connect_client_info_t ci;
    err_t err;

    ip4_addr_t ip_addr;
    IP4_ADDR(&ip_addr, 106, 14, 44, 95);

    /* Setup an empty client info structure */
    memset(&ci, 0, sizeof(ci));

    /* Minimal amount of information required is client identifier, so set it here */ 
    ci.client_id = "wattnode1";

    /* Initiate client and connect to server, if this fails immediately an error code is returned
        otherwise mqtt_connection_cb will be called with connection result after attempting 
        to establish a connection with the server. 
        For now MQTT version 3.1.1 is always used */

    err = mqtt_client_connect(client, &ip_addr, MQTT_PORT, mqtt_connection_cb, 0, &ci);

    /* For now just print the result code if something goes wrong */
    if(err != ERR_OK) {
        printf("mqtt_connect return %d
", err);
    }
}

static void mqtt_main_task(void *d)
{
    printf("Enter mqtt_main_task
");
    // mqtt_client_t *client = mqtt_client_new();
    client = mqtt_client_new();
    if(client != NULL) {
        mqtt_do_connect(client);
    }
}
// EOF mqtt

3.3智能开关

// switch variable
const int SWITCH_PIN = PC1;
static csi_gpio_pin_t pin;
#define GPIO_CHECK_RETURN(ret)           
    do {                                 
        if (ret != CSI_OK) {             
            return -1;                   
        }                                
    } while(0);

//init the switch
void switch_init()
{
  ret = csi_gpio_pin_init(&pin, SWITCH_PIN);
  GPIO_CHECK_RETURN(ret);

  /* Set output mode */
  ret = csi_gpio_pin_dir(&pin, GPIO_DIRECTION_OUTPUT);
  GPIO_CHECK_RETURN(ret);
}
// EOF switch

3.4串口处理部分

// uart variable
static csi_uart_t g_uart;
static volatile uint8_t rx_async_flag = 0;
static volatile uint8_t tx_async_flag = 0;
static uint8_t tx_buffer[140];
static uint8_t rx_buffer[140];
int recieve_data_num = 37;
#define DATE_UART_BAUDRATE   4800
#define DATE_UART_IDX 5
#define UART_CHECK_RETURN(ret)                      
        do {                                        
            if (ret != CSI_OK) {                    
                return -1;                          
            }                                       
        } while(0);

// crc function
unsigned int calc_crc(unsigned char crcbuf, unsigned int crc);
unsigned int chk_crc(unsigned char* buf, unsigned char len);

//task
static aos_task_t task_date_uart5;

void date_uart5_entry()
{
   
while(1)
{
switch(recv_cmd){
case 0:
break;
case 1:
csi_gpio_pin_write(&pin, GPIO_PIN_HIGH);
recv_cmd = 0;
break;
case 2:
csi_gpio_pin_write(&pin, GPIO_PIN_LOW);
recv_cmd = 0;
break;
case 3:
read_consumer_data();
recv_cmd = 0;
break;
default:
break;

}//eof switch

aos_msleep(2000);
    }//eof while
}//eof func

//callback function of uart
static void uart_event_cb(csi_uart_t *uart, csi_uart_event_t event, void *arg)
{
  switch (event) {
    case UART_EVENT_SEND_COMPLETE:
      tx_async_flag = 1;
      break;

    case UART_EVENT_RECEIVE_COMPLETE:
      rx_async_flag = 1;
      break;

    default:
      break;
  }//eof switch
}//eof func


void uart_init()
{
  csi_pin_set_mux(PB4, PB4_UART5_TX);
  csi_pin_set_mux(PB5, PB5_UART5_RX);

  /* init uart, DATE_UART_IDX == 5 */
  ret = csi_uart_init(&g_uart, DATE_UART_IDX);
  UART_CHECK_RETURN(ret);

  /* set uart baudrate */
  ret = csi_uart_baud(&g_uart, DATE_UART_BAUDRATE);
  UART_CHECK_RETURN(ret);

  /* set uart format */
  ret = csi_uart_format(&g_uart, UART_DATA_BITS_8, UART_PARITY_NONE, UART_STOP_BITS_1);
  UART_CHECK_RETURN(ret);

  /* attach callback to uart device */
  ret = csi_uart_attach_callback(&g_uart, uart_event_cb, NULL);
  UART_CHECK_RETURN(ret);

}



// calculate crc function
unsigned int calc_crc(unsigned char crcbuf, unsigned int crc)
{
unsigned char i;
unsigned char chk;
crc = crc ^ crcbuf; for (i = 0; i < 8; i++)
{
chk = (unsigned char)(crc & 1);
crc = crc >> 1;
crc = crc & 0x7fff;
if (chk == 1) crc = crc ^ 0xa001;
crc = crc & 0xffff;
}
return crc;
}

// verify crc function
unsigned int chk_crc(unsigned char* buf, unsigned char len)
{
unsigned char hi, lo;
unsigned int i;
unsigned int crc;
crc = 0xFFFF;
for (i = 0; i < len; i++)
{
crc = calc_crc(*buf, crc);
buf++;
}

hi = (unsigned char)(crc % 256);
lo = (unsigned char)(crc / 256);
crc = (((unsigned int)(hi)) << 8) | lo;
return crc;
}

3.5主函数

int main(void)
{
  cxx_system_init();
  board_yoc_init();

  switch_init();
  uart_init();
    
  /* Subscribe */
  event_subscribe(EVENT_NETMGR_GOT_IP, network_event, NULL);
  event_subscribe(EVENT_NETMGR_NET_DISCON, network_event, NULL);
  
  aos_task_new_ext(&task_date_uart5, "task_date_uart5", date_uart5_entry, NULL, 4096, AOS_DEFAULT_APP_PRI);
//  aos_task_new_ext(&uart5_proc, "uart5_proc", data_proc, NULL, 1024, 30);
  
  app_wifi_init();

  // while (1) {
  //   if (is_mqtt_ready == 1) {
  //   //   read_consumer_data();
  //     printf("OK");
  //     // aos_msleep(1000);
  //   }
  //   // test_uart();
    
  //   // aos_msleep(2000);
  // }
}

04问题汇总

uart的配置

在官方的GitBook中对驱动函数进行了详细地讲解并附有相关例程:文档首页· GitBook (t-head.cn)

但并未对具体的底层配置修改进行说明,在一开始编写串口部分的代码时,一直未能成功初始化并调通串口,在工程师的帮助之下对D1 dock pro的底层配置有了一定的了解。这里以led_demo为例,演示如何在此基础之上成功配置uart5。

改动1

181fac06-7f43-11ed-8abf-dac502259ad0.png

改动2

184a2e5e-7f43-11ed-8abf-dac502259ad0.png

改动3

189f4ca4-7f43-11ed-8abf-dac502259ad0.png

改动4

191571cc-7f43-11ed-8abf-dac502259ad0.png

做完以上三处改动,即可参考UART·GitBook(t-head.cn)中的使用示例对uart5进行验证,注意需要先csi_pin_set_mux(PB4,PB4_UART5_TX);和csi_pin_set_mux(PB5,PB5_UART5_RX);

05项目总结

“我们对‘碳中和’比较感兴趣,学校也鼓励我们探索交叉学科,我负责系统架构搭建和区块链技术,另外两位队员负责硬件编程及网页编程。从最初简单的能源物联网演示,到利用区块链技术实现M2M自主交易,我们做了很多讨论和尝试,终于在RISC-V平台上跑通了程序!”“萌新队”队长、华东师范大学大四学生龚丹妮说。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 能源系统
    +关注

    关注

    0

    文章

    85

    浏览量

    11137
  • 开发板
    +关注

    关注

    25

    文章

    5084

    浏览量

    97746
  • RISC-V
    +关注

    关注

    45

    文章

    2300

    浏览量

    46272

原文标题:应用速递 | 摘得头奖的小队究竟是做了什么项目?

文章出处:【微信号:芯片开放社区,微信公众号:芯片开放社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    请问TVP5158分辨率D1与HalfD1是如何转换的?

    这段时间在调试TVP5158模拟视频采集芯片,发现输出数据有三种分辨率D1、HalfD1和CIF,手册上面只是说明了D1、HalfD1和CIF三者的水平像素点和垂直行数的关系,但是这
    发表于 12-23 06:31

    RISC-V架构及MRS开发环境回顾

    ,华为海思转向了开源指令集架构RISC-V,针对鸿蒙操作系统的开发者发布了首款RISC-V开发板Hi3861。Hi3861针对的是物联网市场
    发表于 12-16 23:08

    SiFive 推出高性能 Risc-V CPU 开发板 HiFive Premier P550

    “  HiFive Premier P550:世界上性能最高的 RISC-V CPU 开发板 Mini-DTX 外形提供高性能 Linux 开发平台,支持下一波
    的头像 发表于 12-16 11:16 356次阅读
    SiFive 推出高性能 <b class='flag-5'>Risc-V</b> CPU <b class='flag-5'>开发板</b> HiFive Premier P550

    如何使用 RISC-V 进行嵌入式开发

    、准备开发环境 选择开发板RISC-V架构的嵌入式开发板有多种选择,如GD32VF103R-START、飞凌嵌入式OK113i-S等。选
    的头像 发表于 12-11 17:32 601次阅读

    Made with KiCad(十六):全志RISC-V 64 SoC F133/D1s开发板

    Linux 的开发板一起推出的全志D1 RISC-V 处理器的低成本版,它和D1的主要区别在于D1s内置的RAM是 64MB DDR2。
    的头像 发表于 12-04 18:22 1305次阅读
    Made with KiCad(十六):全志<b class='flag-5'>RISC-V</b> 64 SoC F133/<b class='flag-5'>D1</b>s<b class='flag-5'>开发板</b>

    【RA8D1试用活动】RA8D1B-CPKCOR开发板移植linux

    【RA8D1试用活动】RA8D1B-CPKCOR开发板移植linux
    的头像 发表于 11-16 01:02 275次阅读
    【RA8<b class='flag-5'>D1</b>试用活动】RA8<b class='flag-5'>D1</b>B-CPKCOR<b class='flag-5'>开发板</b>移植linux

    香蕉派开发板BPI-CanMV-K230D-Zero 嘉楠科技 RISC-V开发板开发

    K230D Zero 开发板。这款创新的开发板是由嘉楠科技与香蕉派开源社区联合设计研发,搭载了先进的勘智 K230D 芯片。 K230D
    发表于 11-05 15:29

    香蕉派开发板BPI-CanMV-K230D-Zero 嘉楠科技 RISC-V开发板开发

    科技 K230D RISC-V芯片设计,探索 RISC-V Vector1.0 的前沿技术,选择嘉楠科技的 Canmv K230D Zero 开发板
    的头像 发表于 11-05 15:27 422次阅读
    香蕉派<b class='flag-5'>开发板</b>BPI-CanMV-K230<b class='flag-5'>D</b>-Zero 嘉楠科技 <b class='flag-5'>RISC-V</b><b class='flag-5'>开发板</b>公<b class='flag-5'>开发</b>售

    香蕉派 BPI-CanMV-K230D-Zero 采用嘉楠科技 K230D RISC-V芯片设计

    开发板采用的是嘉楠科技Kendryte®系列AIoT芯片中的最新一代SoC芯片K230D。该芯片采用全新的多异构单元加速计算架构,集成了2个RISC-V高能效计算核心,内置新一代KPU
    发表于 07-30 17:43

    在ESP Wemos D1 Mini Pro上将FTDI连接到RX和TX遇到的疑问求解

    我在 ESP Wemos D1 Mini Pro 上将 FTDI 连接到我的 RX 和 TX。我必须物理断开 Wemos D1 上的 RX 引脚才能刷新新固件。我的猜测是引脚与 Wemos
    发表于 07-10 07:29

    RISC-V最新开发板

    最近市面上有啥新出的RISC-V开发板,可以介绍学习下
    发表于 04-28 22:12

    STM32L475 QSPI单指令模式D1无输出的原因?

    用STM32L475外扩N25Q256存储器,在配置为单指令模式时(如写使能),处理器的D1未见有输出。 比如:Instruction 段配置为0x5A,Address 段配置为NONE,Data段
    发表于 04-26 07:34

    全志D1s开发板裸机开发之坏境搭建

    的DongshanPI-D1S 开发板。 DongshanPI-D1S 是百问网推出的一款基于 RISC-V 架构的学习裸机、 RTOS 的
    发表于 03-06 13:54

    RISC-V SoC + AI | 在全志 D1「哪吒」开发板上,跑个 ncnn 神经网络推理框架的 demo

    的为 RISC-V 架构做过适配和优化的神经网络框架。 本文 是一份教程,步骤骑着步骤 (step by step) 地展示了如何在一块全新的全志 D1「哪吒」开发板上,跑个 ncnn
    发表于 02-26 10:51

    香蕉派发布RISC-V架构BPI-F3开发板

    2 月 3 日,香蕉派发布了基于 RISC-V 架构处理器的开发板 BPI-F3。该产品配备了由进迭时空研发的八核 K1 CPU 芯片,这是全球第一款达到
    的头像 发表于 02-03 16:17 1211次阅读