0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

将量子发射器单光子源集成到光子集成电路上突破限制

MEMS 来源:MEMS 作者:MEMS 2022-12-19 10:42 次阅读

许多光子量子信息处理系统的规模受到整个集成光子电路中量子光通量的限制。光源亮度和波导损耗是片上光子通量受限的根本因素。尽管在超低损耗芯片级光子电路和高亮度单光子源方面分别取得了实质性进展,但这些技术的集成仍然难以实现。

近日,美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)的研究人员展示了量子发射器单光子源与晶圆级超低损耗氮化硅光子电路的集成,并证明了将量子发射器单光子源集成到光子集成电路上,波导损耗约为 1dB/m。研究人员还观察到了强驱动机制下的共振荧光,显示出对量子发射器进行相干控制的前景。这些结果表明向大规模芯片集成光子量子信息系统迈进了一步,在这种系统中,生成的单光子的存储、时分解复用或缓冲是至关重要的。

在这项工作中,超低损耗波导(ULLW)由高纵横比的Si₃N₄组成,厚度为40nm,宽度为2μm,埋于1μm SiO₂上覆层之下。片上单光子源包括一个直线型GaAs纳米波导,其中嵌入了InAs自组装量子点(QD),随后是一个绝热模式转换器,这种几何结构已被证明可以将量子点发射直接有效耦合到空气包层Si3N4脊形波导中。与绝热锥形波导相反,引入了为900nm以上的高反射率设计的一维光子晶体背反射器, 以允许单向发射到Si₃N₄波导中。为了使用模式转换器确保GaAs和Si₃N₄层之间的倏逝耦合,将含有量子点的GaAs器件放置成与Si₃N₄波导的顶部直接接触。时域有限差分(FDTD)模拟预测,制造的几何结构的最大理论单光子耦合效率ηQD-ULLW ≈ 0.31。

52caaf40-7eee-11ed-8abf-dac502259ad0.jpg


单光子源与超低损耗波导的集成

关于ULLW中相对较低的单光子耦合效率,主要影响因素包括次优的纳米光子设计和量子点定位,以及GaAs器件内的偶极矩取向。虽然已经开发了各种技术来解决后一个问题,但光子设计具有两个从基本上导致效率较低的因素。首先,波导几何结构的选择限制了量子点与波导的耦合。倏逝耦合微腔是实现更高整体耦合效率的另一种可行的窄带替代方案,也是未来工作的主题。基于腔的方法的一个优点是,通过耦合到谐振模式实现的高Purcell辐射速率增强可以使量子发射器的寿命T1更接近辐射极限T2 = 2T1,相干时间T2完全不受纳米制造的影响,从而提高了不可分辨性。另一方面,单个量子点在相对较宽的光谱范围内表现出各种激子跃迁,这可用于触发单光子发射之外的其他功能。重要的是,所有提出的提高源效率的方法仅涉及对GaAs器件层的修改,而电路的Si₃N₄超低损耗部分将不受影响。

52e4469e-7eee-11ed-8abf-dac502259ad0.jpg


通过超低损耗波导测量的单光子发射

在所设计的器件和实验配置中,研究人员观察到直接收集到ULLW中的共振荧光光谱(没有偏振滤波或时间门控)。 通过单独控制入射激光的偏振,使用谐振激光器激发,测得消光比 > 25。这得益于高纵横比ULLW提供的高空间模式滤波。研究人员注意到,在金刚石中集成Ge空位量子发射器的AlN电路中,在没有偏振滤波的情况下也观察到了共振荧光,并且仅控制泵浦偏振就足以通过片上超导纳米线单光子探测器(SNSPD)观察到波导耦合共振荧光。

53060400-7eee-11ed-8abf-dac502259ad0.jpg


量子点的共振荧光和相干控制

通过纳米光子设计和确定性的量子点定位,提高了量子点-波导耦合效率和单光子不可分辨性,并进一步最小化无源片上组件中的传播和插入损耗,这将更接近完全芯片集成的系统,实现实用的玻色子(Boson)采样和具有量子优势的相关光子量子信息任务。研究人员演示的超低传播损耗可能已经实现单量子发射器单光子源的时分解复用的片上延迟,以产生用于Boson采样的空间复用光子。

总之,本项工作的研究结果表明,在超低损耗≤1dB/m的光子集成电路中,量子发射器作为单光子源具有很高的应用前景,这对于在芯片上创建大规模的光子量子信息系统至关重要。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5374

    文章

    11290

    浏览量

    360204
  • 发射器
    +关注

    关注

    6

    文章

    841

    浏览量

    53346

原文标题:集成单量子发射器的超低损耗光子电路

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    光是如何在光子集成电路中传播的

    首先,我们需要理解的是光的基本理论。光是由微粒,称为光子,组成的。光子是一种无质量的粒子,它以光速在空间中传播。当光子通过媒质(如空气、水或玻璃)时,它们会与媒质中的原子和分子相互作用,导致光的速度降低。这个过程被称为光的折射。
    的头像 发表于 05-22 12:32 181次阅读

    光子集成芯片和光子集成技术的区别

    光子集成芯片和光子集成技术虽然紧密相关,但它们在定义和应用上存在一些区别。
    的头像 发表于 03-25 14:45 698次阅读

    光子集成芯片和光子集成技术是什么

    光子集成芯片和光子集成技术是光子学领域的重要概念,它们代表了光子集成电路领域的应用和发展。
    的头像 发表于 03-25 14:17 909次阅读

    光子集成芯片的基础知识

    光子集成芯片是一种利用光波作为信息传输或数据运算载体的集成电路。它依托于集成光学或硅基光电子学中的介质光波导来传输导模光信号,光信号和电信号的调制、传输、解调等功能
    的头像 发表于 03-22 17:29 692次阅读

    光电集成芯片和光子集成芯片的区别

    光电集成芯片和光子集成芯片在多个方面存在显著的区别。
    的头像 发表于 03-22 16:56 1249次阅读

    光子集成芯片的工作原理和应用

    光子集成芯片(Photonic Integrated Circuit,简称PIC)是一种光子学和电子学功能集成在同一芯片上的技术。这种芯片利用光子
    的头像 发表于 03-22 16:55 1450次阅读

    光子集成芯片是什么

    光子集成芯片,也称为光子芯片或光子集成电路,是一种光子器件小型化并集成在特殊衬底材料上的技术。
    的头像 发表于 03-22 16:51 1051次阅读

    光子集成芯片的应用范围

    光子集成芯片的应用范围非常广泛,得益于其在高速数据传输、低功耗通信以及高度集成等方面的显著优势。
    的头像 发表于 03-20 17:05 879次阅读

    光子集成芯片的应用领域

    光子集成芯片的应用领域相当广泛,其基于光子学的特性使得它在多个领域都能发挥重要作用。
    的头像 发表于 03-20 16:24 1032次阅读

    微波光子集成芯片和硅基光子集成芯片的区别

    微波光子集成芯片和硅基光子集成芯片都是光电子领域的重要技术,但它们在设计原理、应用领域以及制造工艺上存在着显著的区别。
    的头像 发表于 03-20 16:14 830次阅读

    简单认识微波光子集成芯片和硅基光子集成芯片

    、光放大器和光探测等组成,而微波器件则由微波源、微波调制、微波放大器和微波探测等组成。通过这些器件集成在同一芯片上,微波
    的头像 发表于 03-20 16:11 761次阅读

    光子集成芯片基础知识

    光子集成芯片,一种新型的光电子器件,光子器件与集成电路技术相结合,实现了光信号与电信号的集成处理。它以其独特的工作原理和广泛的应用领域,成
    的头像 发表于 03-20 16:10 611次阅读

    光子集成电路驱动下的便携式OCT技术

    光子和电子集成电路集成简化了组装过程并降低了生产成本,使OCT系统更容易为更广泛的医疗机构和患者所使用。
    的头像 发表于 02-25 11:09 699次阅读

    光子温度传感:从光子集成芯片完整封装微型探针

    与电子元器件类似,光子电路也可以微型化芯片上,形成所谓的光子集成电路(PIC)。
    的头像 发表于 12-25 10:26 928次阅读
    硅<b class='flag-5'>光子</b>温度传感<b class='flag-5'>器</b>:从<b class='flag-5'>光子集成</b>芯片<b class='flag-5'>到</b>完整封装微型探针

    光子集成电路的特性

    光子学因其从量子计算到生物传感的广泛应用而成为一项关键技术和广泛研究的领域。光子结构的测试和表征需要灵敏、精确和定量的成像和光谱解决方案,从可见光红外波长(电信波长)。
    的头像 发表于 11-24 06:33 462次阅读
    <b class='flag-5'>光子集成电路</b>的特性