0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

看懂自动驾驶,首选这「四大指标」

Nullmax纽劢 来源:Nullmax纽劢 作者:Nullmax纽劢 2022-12-19 14:51 次阅读

对于大部分人来说,想要看懂自动驾驶是件很难的事情,面对各种各样的软硬件和数不胜数的参数,通常都会陷入不得要领、雾里看花的感受当中。

尤其是自动驾驶系统复杂浩大,很多表面上的数字,代表不了实际的性能。无论是L0-L5的分级,还是传感器的数量和芯片的纸面算力,在欠缺大量细节的情况下很难形成有价值的参考。

在Nullmax看来,如果希望通过一些关键的指标,相对准确地了解自动驾驶方案的能力,那么最好的依据还是实际量产应用中的这些数据:资源占用,帧率,延时,性能。

一些容易误解的数字

在自动驾驶蓬勃发展的这些年里,很多人对自动驾驶的判断,主要存在于L0-L5的6个等级里,数字越高、系统越好的误解由来已久。

其实,这套广泛流传的标准引入了大量的前置条件,如果抛开ODD(设计运行范围)、OEDR(目标与事件检测及响应)等核心要素来谈自动驾驶的水平高低,就像抛开考试范围和题目类型来谈考试分数一样,没有任何参考意义。

用数值的高低来判断自动驾驶水平的高低,至少需要有相似的比较前提。如果运行的区间、处理任务的能力存在巨大差别,那么两套方案的难度和价值,很难直接通过L2/L3/L4这样的数字简单判断。

除此之外,自动驾驶的另外一大误解,那就是配置的多少和高低代表着系统的能力。事实上,配置代表的是潜力,只有挖掘出来的潜力才是系统的能力,而高投入也并不等于高产出。

这就像是建房子一样,物料的多少和好坏并不能决定房屋最终的效果,只有通过好的设计和施工,它们才能成为优秀的建筑。自动驾驶系统可以搭配丰富多样的传感器,配置高算力的芯片平台,但是更需要优秀的架构设计和工程化能力,通过一整套好的自动驾驶软件算法,将硬件的作用发挥出来。

如果100分的硬件只能发挥出50%的能力,且不说高昂的成本是否值得,它的效果自然也就比不上发挥100%能力的80分硬件,后者的自动驾驶水平必然会更高。

四大指标揭示真实效果

自动驾驶的本质,是由软件系统代替人类司机完成感知、决策等过程,直接控制汽车完成驾驶任务。

所以在评估效果时,实际也可以像看待人类司机一样分析自动驾驶系统:如果它能像老司机一样有条不紊地开车,快速地识别周围环境,及时地做出反应,并以严格的要求完成驾驶任务,那么就是一个好的方案。

这些判断的标准,对应到一套成熟的自动驾驶方案身上,其实大致可以归结为四类具体的指标:资源占用,帧率,延时,性能。

01/

资源占用

自动驾驶的算力、内存、带宽等资源相对有限,但是需要处理传感器持续输入的海量数据,如果资源占用率一直很高,始终处于高负荷甚至是超负荷的状态,那么系统可能就会出现不稳定甚至是崩溃的情况。因此,将资源充分利用但不过度占用,对于自动驾驶来说更为合适。

这就像是人类司机一样,开车时如果手忙脚乱,就很容易忙中出错。在既定的硬件资源下,自动驾驶系统需要让各模块井然有序地高效工作,简单场景下只需占用部分资源,遇到复杂场景时「大脑」再才高速运转。

通常来说,在中低算力的平台上,行业方案的CPU峰值占用率为80~90%,内存占用率为80%以上,AI单元利用率为60~80%。在Nullmax的同类方案中,这些资源指标可以进一步优化,实际表现优出10%以上。以单TDA4行泊一体方案为例,严苛情况下的CPU占用率峰值不超过70%,面对感知任务计算峰值,AI计算单元的利用率可达90%以上。

02/

帧率

帧率越高,自动驾驶感知的速度也就越快。如果感知的帧率只有10FPS,那么0.1秒才能输出一次感知结果,对一辆时速90公里的汽车来说,期间将会行进2.5米,足足半个车身的长度。

不过感知的帧率并不等于传感器的帧率,前者是实际感知结果输出的速度,后者是原始数据输入的速度。高帧率需要好的软件算法,才能实现软硬件的高效配合,比如在8T算力的中低算力平台上,Nullmax可以实现20FPS的周视360°感知输出,并且保证前后一共120米的高质量bev感知能力。

7361159a-7f4e-11ed-8abf-dac502259ad0.gif

在瞬息万变的驾驶环境下,更高的感知帧率意味着发现危险的速度更快、时机更早,能够为下游模块留出更多应对的时间和空间。

03/

延时

自动驾驶系统在收到传感器数据后,「大脑」也需要花费一些时间进行分析和决策,最后再输出具体的控制信号,这个过程花费的时间就是系统延时。自动驾驶不仅需要看得很快,还要能够快速做出反应,才能拥有好的驾驶表现。

延时过大,意味着自动驾驶经常会「贻误时机」,在变化无穷的驾驶环境下,很多的操作也会变得「不合时宜」。Nullmax将自动驾驶系统的延时极限压缩,从传感器数据的输入到控制器信号的输出保持在百毫秒范围内,最大程度地提升系统的反应能力。

在反应能力更快的情况下,自动驾驶覆盖的场景和极限工况也将会更多。

04/

性能

在满足一系列的安全硬指标后,自动驾驶的比拼就到了性能的环节。通过一系列的性能指标,自动驾驶的实际效果可以用数字精准量化出来。比如看得远不远、准不准,开车快不快、稳不稳,就可以透过感知距离、精准率、最大车速、加加速度等数值体现出来。

自动驾驶的性能指标非常多样,涉及多个维度。如果是判断感知等能力,那么可以通过支持的种类、数量以及召回率、精准度、误差等指标进行分析,比如障碍物检测、车道线检测等。如果是判断具体的功能,那么可以通过速度、距离、弯道曲率、坡度等指标进行分析,比如自动领航、自主泊车等。

目前在Nullmax的量产方案中,自动驾驶感知距离超过200米,对主要目标检测的关键指标,例如CIPV(Closest In-Path Vehicle)的召回率、精确率达到99.9%,漏检率<0.1%,大幅领先行业标杆水平。

结语

前装自动驾驶产品是一个技术、成本等因素综合考虑的产物。虽然不能用一些简单的数字进行比较,但是透过这些关键的指标,大家也能够相对细致、全面地了解一套方案的真实能力,「不看广告看疗效」地认识自动驾驶。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2551

    文章

    51084

    浏览量

    753425
  • 控制器
    +关注

    关注

    112

    文章

    16356

    浏览量

    177986
  • 自动驾驶
    +关注

    关注

    784

    文章

    13806

    浏览量

    166438
  • LLM
    LLM
    +关注

    关注

    0

    文章

    287

    浏览量

    331

原文标题:看懂自动驾驶,首选这「四大指标」

文章出处:【微信号:Nullmax,微信公众号:Nullmax纽劢】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    自动驾驶中常提的SLAM到底是个啥?

    随着自动驾驶技术的迅速发展,车辆在不同环境中的定位与导航需求愈加迫切,自动驾驶的核心任务是让车辆在未知或动态变化的环境中安全、智能地行驶,需要系统能够准确地回答:1)我在哪里?2)我该去哪里
    的头像 发表于 11-21 15:17 915次阅读
    <b class='flag-5'>自动驾驶</b>中常提的SLAM到底是个啥?

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶汽车的安全问题变得非常重要,这样你才能回答“自动驾驶汽车安全吗”和“
    的头像 发表于 10-29 13:42 509次阅读
    <b class='flag-5'>自动驾驶</b>汽车安全吗?

    自动驾驶HiL测试方案案例分析--ADS HiL测试系统#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月22日 15:20:19

    自动驾驶技术的典型应用 自动驾驶技术涉及到哪些技术

    驾驶员的情况下完成驾驶操作。这一技术的出现极大地改变了传统驾驶模式,不仅提高了道路交通的安全性和效率,还有望改变人们的出行方式,对城市交通产生深远影响。以下是自动驾驶技术的典型应用:
    的头像 发表于 10-18 17:31 758次阅读

    自动驾驶HiL测试方案——摄像头仿真之视频注入#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月17日 15:18:41

    自动驾驶HiL测试方案 ——场景仿真3D演示#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月16日 10:55:35

    自动驾驶HiL测试方案介绍#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月12日 18:02:07

    FPGA在自动驾驶领域有哪些优势?

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)在自动驾驶领域具有显著的优势,这些优势使得FPGA成为自动驾驶技术中不可或缺的一部分。以下是FPGA在自动驾驶
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    是FPGA在自动驾驶领域的主要应用: 一、感知算法加速 图像处理:自动驾驶中需要通过摄像头获取并识别道路信息和行驶环境,涉及到大量的图像处理任务。FPGA在处理图像上的运算速度快,可并行性强,且功耗
    发表于 07-29 17:09

    自动驾驶识别技术有哪些

    自动驾驶的识别技术是自动驾驶系统中的重要组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。自动驾驶识别技术主要包括多种传感器及其融合技术,以及基于这些传感器数据的处理和识别算法。
    的头像 发表于 07-23 16:16 658次阅读

    特斯拉在华推进全自动驾驶

    特斯拉自动驾驶技术入华成为市场焦点。马斯克提出的“无人驾驶出租车”概念正引领特斯拉在中国市场加速推进自动驾驶技术的创新。
    的头像 发表于 05-11 09:39 436次阅读

    未来已来,多传感器融合感知是自动驾驶破局的关键

    的Robotaxi运营。标志着L4级自动驾驶迎来了新的里程碑,朝着商业化落地迈进了一大步。中国的车企也不甘落后:4月7日,广汽埃安与滴滴自动驾驶宣布合资公司——广州安滴科技有限公司获批工商执照。广汽埃安
    发表于 04-11 10:26

    维图新自动驾驶项目通过ASPICE CL2级认证

    近日,维图新再度在质量体系建设上取得重要突破,其服务于某国际知名车企的自动驾驶数据及位置服务平台项目成功通过ASPICE CL2级认证。这一成就不仅彰显了维图新在自动驾驶领域的实力
    的头像 发表于 03-28 11:32 671次阅读

    自动驾驶发展问题及解决方案浅析

    随着科技的飞速进步,自动驾驶汽车已经从科幻概念逐渐转变为现实。然而,在其蓬勃发展的背后,自动驾驶汽车仍面临一系列亟待解决的问题和挑战。本文将对这些问题进行深入的剖析,并提出相应的解决方案,以期为未来自动驾驶
    的头像 发表于 03-14 08:38 1146次阅读

    华为自动驾驶技术怎么样?

          自动驾驶技术是当今世界汽车产业的重要发展方向。作为全球领先的科技企业,华为在自动驾驶技术方面也进行了深入的研发和创新。 一、华为自动驾驶技术的实力 华为在自动驾驶技术方面的
    的头像 发表于 02-02 16:58 1740次阅读