0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

​东南大学《AFM》:缺陷氮化硼诱导LiBH4亚表面锂离子迁移!

鸿之微 来源:鸿之微 作者:鸿之微 2022-12-21 14:37 次阅读

锂离子电池中有机液体电解质的安全问题令人关注,开发高安全性、高能量密度的固体电解质越来越受到人们的重视。氢化物电解质具有高的电化学稳定性和阳极兼容性,可以充分缓解安全焦虑。然而,室温下呈现的低离子电导率仍然有待进一步提升。

来自东南大学的学者采用h-BN缺陷诱导(BH4)-四面体变形的策略来提高LiBH4/BN复合电解质的室温离子电导率。理论计算表明,(BH4)-四面体的体积膨胀了14%。这种四面体变形削弱了LiBH4中的Li-H相互作用力,从而促进了Li离子的迁移。LiBH4/BN复合材料能够在40℃下提供1.15×10-4S cm-1的锂离子电导率,锂离子迁移数为97%。在室温下的电子电导率极低,为4.59×10-10S cm-l。LiBH4的亚表面提供了所有可能的离子扩散通道中最低的迁移阻碍,为锂离子迁移提供了最佳道路。此外,LiBH4/BN电解质还具有优异的电化学稳定性和电极兼容性。所采用的外场诱导(不仅是缺陷)和配体变形(不仅是(BH4)-)策略也可以扩展到其他固体电解质。相关文章以“Defective Boron NitrideInducing the Lithium-ion Migration on the Sub-surface of LiBH4”标题发表在Advanced Functional Materials。

论文链接:

https://doi.org/10.1002/adfm.202205677

aa722440-805a-11ed-8abf-dac502259ad0.jpg

aa9113d2-805a-11ed-8abf-dac502259ad0.jpg

图1 LiBH4/d-BN复合材料合成示意图。首先通过机械研磨获得缺陷氮化硼d-BN,然后与LiBH4进行球磨以获得均匀的混合物。其后,将混合物在295℃和4MPa氢气下加热12h,合成了LiBH4/(d-BN)复合材料,LiBH4在高于熔融温度的条件下优先在BN的低势垒缺陷处成核,并表现出显著的缺陷诱导效应。在LiBH4/h-BN和LiBH4/d-BN中,B-H(1)和B-H(2)键分别比纯相LiBH4延长了5%和9%。LiBH4/d-BN中(BH4)-四面体的体积比纯相LiBH4膨胀约14%。

aaa80542-805a-11ed-8abf-dac502259ad0.jpg

图2:a)初始h-BN和b)缺陷BN的原子分辨率HAADF-STEM图像,采用集成差分相位对比(iDPC)成像技术获取;c、d)LiBH4/2(d-BN)的HRTEM图像;d)图为c的橙色选区中的放大分辨率视图;e)LiBH4/2(d-BN)的FFT图像。

aadb9aba-805a-11ed-8abf-dac502259ad0.jpg

图3:a)为LiBH4/d-BN复合材料的FT-IR光谱。在所制备的样品中检测到对应于LiBH4和h-BN的B-H和B-N振动带,同时在918cm-1处识别出B-H振动的吸收峰。b)为LiBH4/BN复合材料的拉曼光谱。LiBH4在1300和2300 cm-1附近的谱带大大减弱,是由于大量添加了BN,而在2300 cm-1附近的B–H的轮廓变化可能来自B-H键的变形。

ab01cd3e-805a-11ed-8abf-dac502259ad0.png

图4:a-c)LiBH4、LiBH4/h-BN和LiBH4/d-BN的电子局域函数(ELF)模式。ELF值在[0,1]的数值区间内分配,等高线的密度反映了电子密度。d-g)LiBH4、LiBH4/h-BN和LiBH4/d-BN的总态密度和分态密度(TDO和PDO)图。

adf60820-805a-11ed-8abf-dac502259ad0.jpg

图5:a)具有不同摩尔比的LiBH4/d-BN复合材料及纯相LiBH4的温度-电导率关系曲线;b)用阿仑尼乌斯方程计算的LiBH4/d-BN复合材料和LiBH4的活化能;c-d)LiBH4/2(d-BN)和LiBH4在303K下的7Li固态核磁共振谱。

ae24651c-805a-11ed-8abf-dac502259ad0.png

图6: a)在LiBH4分别与h-BN、d-BN的两相界面处,以及LiBH4/h-BN和LiBH4/d-BN中LiBH4的亚表面处,锂离子的转移势垒。b)在LiBH4分别与h-BN、d-BN的两相界面处,以及LiBH4/h-BN和LiBH4/d-BN中LiBH4的亚表面处,锂离子的迁移路径;c)比较了LiBH4、LiBH4/H-BN和LiBH4/d-BN中(BH4)-四面体的变形和Li-H之间相互作用力的变化。在LiBH4/d-BN中,B-H明显伸长,导致(BH4)-四面体变形,H和Li之间的库仑作用力显著减弱。

ae88c0ca-805a-11ed-8abf-dac502259ad0.png

图7 a)LiBH4/2(d-BN)在最初三个循环内的CV曲线;b)TiS2|LiBH4/2(d-BN)|Li全电池的恒电流充电/放电曲线;c)TiS2|LiBH4/2(d-BN)|Li全电池的循环放电容量和库仑效率;d)LiBH4/2(d-BN)的对锂循环充放电曲线,电流密度逐渐增加,到4.6mA cm-2时出现突变,获得临界电流密度;e)LiBH4/2(d-BN)的对称锂电池的恒电流循环曲线。

在本研究中,除了通过缺陷诱导提高了LiBH4室温离子电导率外,还观察到如下几点现象:

1)d-BN是通过改变了LiBH4的电子分布,才导致(BH4)-膨胀和变形的;

2)(BH4)-四面体的变形削弱了Li+和(BH4)-之间的相互作用,从而减少了LiBH4对Li离子的束缚;

3)锂离子主要在LiBH4的亚表面转移,LiBH4亚表面的锂离子迁移势垒(低至0.29eV)是所有可能的扩散通道中最低的。

LiBH4/2(d-BN)复合材料还具有0至5V的宽电化学稳定性窗口(相对于Li/Li+),在70℃下具有优异的Li枝晶抑制能力,临界电流密度为4.6mA cm-2,并且与电极材料具有高兼容性。

所提出的通过缺陷诱导变形来提高离子电导率的策略是可行的。该机制可以扩展到其他输出场和其他固态电解质。这意味着通过这种策略,一方面,LiBH4中的(BH4)-四面体可以通过各种外场进行调节,以提高硼氢化物的离子电导率。另一方面,对于氧化物、硫化物和卤化物的配体和间隙的调控也可通过外场感应实施。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3238

    浏览量

    77693
  • 电解质
    +关注

    关注

    6

    文章

    811

    浏览量

    20053
  • 电导率
    +关注

    关注

    1

    文章

    204

    浏览量

    13921

原文标题:文章转载丨​东南大学《AFM》:缺陷氮化硼诱导LiBH4亚表面锂离子迁移!

文章出处:【微信号:hzwtech,微信公众号:鸿之微】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    一种氮化硼纳米片增强的高导热复合材料

    W/mK)难以满足现代散热需求。研究表明,添加高热导率填料(如石墨烯、碳纳米管和氮化硼等)可以显著提高聚合物复合材料的热导率,但需要大量填料来建立导热网络,这通常会导致介电常数和介电损耗的增加。因此,迫切需要新的解决方
    的头像 发表于 12-07 10:25 201次阅读
    一种<b class='flag-5'>氮化硼</b>纳米片增强的高导热复合材料

    高导热高绝缘低介电材料 | 氮化硼散热膜

    一、六方氮化硼(h-BN)六方氮化硼(h-BN)是由氮原子和原子构成的共价键型晶体,具有类似石墨的层状结构,呈现松散、润滑、易吸潮、质轻等性状的白色粉末,所以又称“白色石墨”。它的理论密度
    的头像 发表于 11-15 01:02 281次阅读
    高导热高绝缘低介电材料 | <b class='flag-5'>氮化硼</b>散热膜

    Die-cutting converting 精密模切加工|氮化硼散热膜(白石墨烯)

    基于二维氮化硼纳米片的复合薄膜,此散热膜具有透电磁波、高导热、高柔性、高绝缘、低介电系数、低介电损耗等优异特性,是5G射频芯片、毫米波天线领域最为有效的散热材料之一。高导热透波绝缘氮化硼膜材主要
    的头像 发表于 10-31 08:04 277次阅读
    Die-cutting converting 精密模切加工|<b class='flag-5'>氮化硼</b>散热膜(白石墨烯)

    PCB耐离子迁移之SIR表面绝缘电阻

    电子发烧友网站提供《PCB耐离子迁移之SIR表面绝缘电阻.pdf》资料免费下载
    发表于 10-21 11:04 0次下载

    高绝缘散热材料 | 石墨片氮化硼散热膜复合材料

    石墨片氮化硼散热膜复合材料是一种结合了石墨片和氮化硼散热膜各自优异性能的新型复合材料。一、石墨片的基本特性石墨片是一种由天然石墨或人造石墨经过精细加工而成的薄片材料,具有以下特性:高热导率:石墨片在
    的头像 发表于 10-05 08:01 280次阅读
    高绝缘散热材料 | 石墨片<b class='flag-5'>氮化硼</b>散热膜复合材料

    晟鹏技术 | 打造全球领先的中国散热品牌

    “卡脖子”问题,大幅扩展了国产氮化硼原料的应用前景,从二维材料角度突破国际专利壁垒,助力我国半导体电子产业的发展,实现国产替代。依托清华大学盖姆石墨烯中心、中科院深圳
    的头像 发表于 06-05 08:10 1002次阅读
    晟鹏技术 | 打造全球领先的中国散热品牌

    东南大学器官芯片研究院成立,攻坚器官芯片核心技术

    据悉,这所新设立的研究院将由东南大学生物科学与医学工程学院主导,联合其他相关学院共同建设,形成一个超越传统学科和院系限制的协同育人模式。此举旨在汇聚各种优势资源,引进优秀人才,实现不同性质教师的融合,促进不同学科间的交叉整合。
    的头像 发表于 05-28 15:44 724次阅读

    东南大学柔性集成器件与系统微专业获批立项

    微专业是东南大学为满足国家战略需求及发展新经济体,打造跨学科交叉融合的复合型创新人才而设立,打破原有专业壁垒,围绕特定学术研究、产业趋势或核心素养开设课程。
    的头像 发表于 05-15 17:39 874次阅读

    二维氮化硼高效声子桥效应让快充不再过热

    和六方氮化硼纳米片(BNNS)因其超高的平面热导率而备受关注,已被广泛用于散热膜进行高效均热。然而,当这些二维材料用作热界面材料(TIM),高接触热阻严重限制其应
    的头像 发表于 05-15 08:10 557次阅读
    二维<b class='flag-5'>氮化硼</b>高效声子桥效应让快充不再过热

    科学家提出倾斜台阶面外延生长菱方氮化硼单晶方法

    来源:中国科学院物理研究所 常见的六方相氮化硼(hBN)因化学稳定、导热性能好以及表面无悬挂键原子级平整等特点,被视为理想的宽带隙二维介质材料。菱方相氮化硼(rBN)可以保持hBN较多优异性质,并
    的头像 发表于 05-07 17:55 837次阅读
    科学家提出倾斜台阶面外延生长菱方<b class='flag-5'>氮化硼</b>单晶方法

    北京大学问世世界最薄光学晶体:氮化硼晶体

    据悉,光学晶体被誉为激光技术的核心部件,广泛运用于微纳加工、量子光源及生物检测等领域。北京大学科研团队通过不断尝试,最终确定氮化硼作为最适合研发新型激光器的材料。
    的头像 发表于 04-26 10:41 717次阅读

    5G通信散热的VC及绝缘导热透波氮化硼材料

    下,VC等相变传热技术的发展和应用切实决定着通信产品散热可靠性与性能升级空间,具有至关重要的意义。关键字:二维氮化硼材料,5G,绝缘导热均热膜,VC均热板1散热器
    的头像 发表于 04-02 08:09 978次阅读
    5G通信散热的VC及绝缘导热透波<b class='flag-5'>氮化硼</b>材料

    电池的优缺点有哪些

    ,li-SOcl2,开路电压3.6V,终止电压2.0V。 锂电池的工作原理是:在充电过程中,锂离子从正极材料中脱出,通过电解质迁移到负极材料中;在放电过程中,锂离子从负极材料中脱出,
    的头像 发表于 01-16 10:11 3355次阅读

    什么是锂离子电池?锂离子电池有记忆效应吗?

    什么是锂离子电池?锂离子电池有记忆效应吗? 锂离子电池是一种通过锂离子在正负极之间的反复迁移实现电荷储存和释放的电池。它是一种高能量密度、容
    的头像 发表于 01-10 16:31 1798次阅读

    锂离子电池的充放电原理  锂离子电池和三元锂电池哪个好

     锂离子电池的工作原理是基于锂离子在正极和负极之间的迁移,利用化学反应将化学能转化为电能的物理过程。
    发表于 01-10 15:23 2209次阅读