0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通过调节电解液化学成分实现高倍率和稳定的低温LMB

清新电源 来源:高分子科学前沿 2022-12-28 09:49 次阅读

锂金属电池(LMB)被认为是下一代可充电池的重要候选者,但它存在着不稳定的固体电解质间相(SEI)和锂负极上严重的锂枝晶生长问题,特别是在极端条件下,如高倍率和低温(LT)。

近日,北京航空航天大学王华教授、天津理工大学张晨光教授通过调节电解液化学成分,实现了高倍率和稳定的低温LMB。其中,一个弱的锂离子溶剂化溶剂2-甲基四氢呋喃被用作电解液溶剂,以减轻Li+脱溶剂化的动力学障碍。此外,还加入了具有高供体数的辅助溶剂四氢呋喃,以提高锂盐的LT溶解度,从而在保持弱锂离子溶剂化效应的同时实现了更好的离子传导性。

此外,接触-离子对中出现了丰富的FSI-阴离子,促进了稳定的富含LiF的SEI的形成。因此,Li||Li电池可以在-40℃下以10 mA cm-2的速度运行,极化程度小至154 mV。同时,在8.0 mA cm-2的条件下实现了4000 mAh cm-2的出色累积循环容量,达到了LT碱金属对称电池的最高纪录。同时,在-40℃下实现了可充电的高倍率和稳定的全电池。这项工作证明了电解液化学在协同调节离子传输动力学和SEI方面的优越性,从而在低温下实现超高速和稳定的可充电LMBs。

文章要点:

1. 这项工作通过调整电解液的溶剂化结构,提出了一种高倍率和稳定的LT LMB。

2. 由于Li+与溶剂2-甲基四氢呋喃(MTHF)之间的弱相互作用,以及助溶剂四氢呋喃(THF)的高锂盐溶解能力,获得了具有高离子电导率的弱溶剂化电解液,它显示了快速离子扩散和快速电荷转移。

3. 受益于接触离子对(CIPs)中丰富的双(氟磺酰)亚胺锂(LiFSI)衍生的FSI-,在锂金属负极上形成了稳定的阴离子衍生的LiF富集SEI层,确保了锂金属负极的平滑沉积,从而提高了锂金属负极的循环性。

4. 在LT碱金属对称电池中实现了领先水平的电流密度和累积循环容量。总体而言,这项研究提出了电解液化学在协同调节离子转移动力学和SEI方面的巨大优势,以实现超快和稳定的LT LMBs。

2cd0845c-864d-11ed-bfe3-dac502259ad0.png

图1 电解液分子结构的理论和实验分析

2d10a104-864d-11ed-bfe3-dac502259ad0.png

图2 锂金属负极在低温下的电化学性能

2d4fba38-864d-11ed-bfe3-dac502259ad0.png

图3 低温下锂金属负极上SEI成分的表征

2d98045a-864d-11ed-bfe3-dac502259ad0.png

图4 低温全电池性能

原文链接: https://doi.org/10.1002/adfm.202212349






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解液
    +关注

    关注

    10

    文章

    822

    浏览量

    22779
  • 锂金属电池
    +关注

    关注

    0

    文章

    131

    浏览量

    4225

原文标题:北航王华/天津理工张晨光《AFM》:在-40℃下超快、稳定运行的锂金属电池!

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    动力电池单体电池电压是多少?

    动力电池单体的电压取决于其使用的化学成分和电池设计。
    的头像 发表于 05-06 17:01 883次阅读

    拉曼光谱仪的光学微型化方案研究

    拉曼光谱学(Raman spectroscopy)提供了一种微尺度下对化学成分的无损、无标记定量研究手段。
    的头像 发表于 04-20 09:06 477次阅读
    拉曼光谱仪的光学微型化方案研究

    液位传感器监测铅酸电池电解液液位

    化学反应,电解液的液位会略微下降,如果液位过低,不仅会影响电池的正常工作,还可能会对电池造成损坏。 铅酸电池电解液液位指的是电解液的高度,它代表了电池的电量和工作状态,因此,正确查看
    的头像 发表于 04-08 15:10 265次阅读
    液位传感器监测铅酸电池<b class='flag-5'>电解液</b>液位

    弱溶剂化少层碳界面实现硬碳负极的高首效和稳定循环

    钠离子电池碳基负极面临着首次库伦效率低和循环稳定性差的问题,目前主流的解决方案是通过调节电解液的溶剂化结构,来调节固体电解质界面(SEI),
    的头像 发表于 01-26 09:21 635次阅读
    弱溶剂化少层碳界面<b class='flag-5'>实现</b>硬碳负极的高首效和<b class='flag-5'>稳定</b>循环

    电池化学成分如何影响电池充电 IC 的选择

    等设备可用于救灾协调等工作,而日常生活中使用的 智能手机 和笔记本 电脑 等电池供电设备则帮助人们高效工作和连接社会。 本文将讨论四种电池化学成分(锂离子、磷酸铁锂、锂 聚合 物和镍氢)在 30V 以下电池应用中的优势与挑战,另外还
    的头像 发表于 01-17 18:22 356次阅读
    电池<b class='flag-5'>化学成分</b>如何影响电池充电 IC 的选择

    锂电池电解液如何影响电池质量?锂电池电解液成分优势是什么?

    锂电池电解液如何影响电池质量?锂电池电解液成分优势是什么? 锂电池电解液是锂离子电池的关键组成部分之一,它直接影响电池的性能和质量。 一、锂电池电解
    的头像 发表于 01-11 14:09 548次阅读

    什么是高倍率电池?高倍率锂电池怎么充电?

    什么是高倍率电池?高倍率锂电池怎么充电? 高倍率电池是一种能够在短时间内提供高电流输出的电池。它的特殊设计和化学组成使得在充电和放电过程中可以快速传递电荷,以满足高功率设备的需求。一些
    的头像 发表于 01-10 16:45 768次阅读

    为什么需要高倍率锂电池?高倍率锂电池应用领域

    为什么需要高倍率锂电池?高倍率锂电池应用领域  高倍率锂电池是一种可以在短时间内快速充放电的锂离子电池,具有高能量密度、长循环寿命和较低的自放电率等特点。它在很多领域都具有重要的应用,特别是在需要
    的头像 发表于 01-09 16:31 757次阅读

    电解液与SEI的关系?电解液对SEI的影响?

    电解液在正极、负极表面生成的一层固体膜,对储能器件的性能和寿命具有重要影响。本文将重点探讨电解液与SEI的关系以及电解液对SEI的影响。 首先,电解液在电
    的头像 发表于 11-10 14:58 464次阅读

    电池管理系统:电池化学成分如何影响电池充电 IC 的选择

    于救灾协调等工作,而日常生活中使用的智能手机和笔记本电脑等电池供电设备则帮助人们高效工作和连接社会。 本文将讨论四种电池化学成分(锂离子、磷酸铁锂、锂聚合物和镍氢)在 30V 以下电池应用中的优势与挑战,另外还将介绍适
    的头像 发表于 11-08 16:13 8860次阅读
    电池管理系统:电池<b class='flag-5'>化学成分</b>如何影响电池充电 IC 的选择

    金属材料检测:从元素到化学成分的全面洞察

    成分化学分析,金属材料检测是一个逐步深入过程,借助SED+EDS,成分分析、金相观察等精确检测,才能真正了解金属材料的内在特性,保证其质量和性能,优尔鸿信金属检测,致力于工业互联产品领域金属材料
    的头像 发表于 10-20 08:33 456次阅读
    金属材料检测:从元素到<b class='flag-5'>化学成分</b>的全面洞察

    高倍率航模锂电池

    电源电流电压电子技术电池
    学习电子知识
    发布于 :2023年08月25日 23:59:37

    认识供应链:天赐材料、珠海赛纬等9家电解液制造商

    性和化学稳定性好、电化学和温度窗口宽、电极兼容性好、成本低廉和环境友好的特点。从材料组成来看,电解液由溶质、溶剂和添加剂三部分组成,其中溶剂用以提供活性Li+,溶剂用以溶解锂盐,添加剂
    的头像 发表于 07-25 16:10 695次阅读

    电解液量对电池性能有什么影响

    不同的正负极材料选择合适的电解液体系,并不能保证电池具备好的电化学性能,还要根据不同正极材料需求确定恰当的电解液量。
    的头像 发表于 07-13 09:58 2137次阅读

    锂电池电解液的主要成分有哪些?

    液态锂电池主要包括正极材料、负极材料、隔膜中心的四个重要部分和电解液电解液主要负责正负离子之间的传导、电池能量密度、循环寿命、功率密度和安全性能。宽温应用将发挥关键作用,被称为电池的“血液”。
    的头像 发表于 07-04 09:25 3060次阅读