0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

摩擦纳米发电机 (TENG) 中的二维材料

杨万富 2022-12-28 09:51 次阅读

在现代技术中,推动设备利用环境为其供电并远离笨重的电源。这就是纳米发电机的用武之地。许多较小规模的设备正在试用纳米发电机,包括植入式医疗设备、可穿戴医疗设备、远程监控技术、物联网技术,甚至自供电空气消毒系统。虽然这不是一份详尽的清单,但这些只是寻求自充电功能的一些较发达的领域,以及该领域的一些最新发展。

使用纳米发电机的能量收集领域在商业上仍处于相对初级阶段;然而,这并不能阻止对这些系统的兴趣和基础研究。这是因为当其他能量存储/能量收集技术因其尺寸或电源连接要求而既不可行也不合适时,它们可以为小型远程设备供电。纳米发电机可以为许多小型设备解锁自充电和打开远程应用程序的能力,否则这些应用程序可能无法实现。虽然正在研究和开发几种不同的纳米发电机,但我们将研究一种更有前途和发展更好的纳米发电机,称为摩擦电纳米发电机 (TENG)。

利用材料的摩擦电性能

纳米发电机收集某种形式的外部刺激,并利用这种刺激产生电荷,为小型设备供电——或者在一些尚未广泛开发的情况下,它们可以大量使用和集成,为更大的电子系统供电。摩擦纳米发电机 (TENG) 是一种小型、轻型设备,可以从周围环境中收集运动并将其转化为电能输出。简而言之,TENG 通过接触感应起电机制将机械能转化为电能。

TENG 依靠两种基本机制将机械运动转变为电输出。这些机制是接触带电和静电荷感应。对于将能量从机械能转换为电能的 TENG,设备中的活性摩擦电材料必须首先通过与外部刺激的相互作用而带电。这种接触带电机制产生摩擦力,随后在 TENG 表面产生电荷。然后,TENG 会经历静电荷感应阶段,其中表面电荷会在 TENG 内的材料中重新分布。这种电荷的重新分配会产生电流,然后可以为任何连接的小型设备供电。

在 TENG 中产生和转移电荷的过程依赖于许多不同的小规模物理和化学因素——包括材料变形、断裂、发热以及电子和离子转移。由于许多因素会影响材料是否会表现出良好的摩擦电性能,因此摩擦电效应与基本材料性能之间没有明确的关联。这意味着没有确切的理论可以预测材料可能表现出的摩擦电的存在和大小。因此,设计人员通常采用最佳猜测方法来确定可能合适的材料,方法是根据它们在相互接触时失去或获得电子的能力对它们进行排名。

为什么在 TENG 中使用二维材料

鉴于只有最佳猜测方法可以根据材料失去或获得电子的能力来确定材料是否具有摩擦电性,二维材料因其固有的薄度而很快成为人们感兴趣的候选材料。二维材料的厚度(在某些情况下为一个原子层厚度,在其他情况下为几个原子层厚度)意味着其表面比体积更大的材料更活跃,因此电子更有可能更容易地与它们相互作用这些纳米级的其他表面。此外,一旦进入纳米级领域——尤其是二维材料等薄表面——就会开始观察到量子效应,它有助于促进电子以体积较大的材料无法实现的方式运动,即量子隧穿。

已经针对 TENG 测试了几种不同的二维材料。其中一些方法涉及单独使用 2D 材料,而其他设备则将 2D 材料与聚合物或聚合物复合材料结合使用。大多数二维材料用作摩擦电结的负极。这是因为 2D 材料宁愿从大多数材料中获得电子,从而导致负电荷极性。也可以通过掺杂来大幅修改此过程——在应用二维材料研究中已经使用(并成功)的东西——因为它已被证明可以提高许多二维材料在放置在 TENG 中时的电子捕获能力。

除了二维材料捕获电子并对局部环境中的摩擦和运动提供摩擦电响应的能力之外,与其他材料(包括其他纳米材料)相比,使用二维材料还有其他好处。这些就是二维材料所具有的高度柔韧性、机械强度、耐用性和透明度——这些甚至是其他一些纳米材料所不具备的——这意味着它们可以承受很大的机械应力并提供 l长寿。这是一个关键特性,因为一些机械运动和摩擦有时涉及弯曲(取决于应用)以及摩擦力,因此摩擦电材料需要能够承受弯曲和其他机械应力。

用于 TENG 的不同二维材料的试验包括针对相关应用量身定制的材料。例如,有时基于石墨烯的材料更适合外部医疗设备,因为它们比其他一些二维材料具有更大的柔韧性,并且会更好地贴合患者的皮肤。到目前为止,从空气消毒到植入式心脏起搏器,再到可穿戴监控设备、远程传感器,甚至是 LED 电视的供电等一系列应用都可以使用 TENG 作为电源。

使用的二维材料包括石墨烯及其衍生物、MXenes 和过渡金属二硫化物 (TMDC)。其中,大部分研究都进入了石墨烯材料。但迄今为止最受欢迎的是 TMDC,其中二硫化钼 (MoS 2 ) 在其他 TMDC 中脱颖而出。

虽然石墨烯在某些应用中受到青睐,但二硫化钼被视为总体上最有前途的选择之一,因为它表现出量子限制效应,可作为电荷捕获剂。除此之外,它的能级非常适合传输电子,而且它的表面积很大。目前,作为 TENG 的通用摩擦电材料,它在所有二维材料中表现出最高的输出电压和电流,但是二硫化钼和其他二维材料在 TENG 中的使用仍然受应用需求的制约——因为产生的电输出不是始终是某些应用的唯一驱动因素(例如,灵活性或生物相容性也可能是驱动因素)。所以,

结论

与体积更大的材料甚至其他纳米材料相比,二维材料为 TENG 带来更多好处。二维材料固有的薄度为更有效的电子运动和摩擦电响应提供了更活跃的表面。它们的灵活性和机械耐用性为制造具有长寿命的 TENG 提供了一种选择。尽管目前人们对创建 TENGs 为小型和远程设备供电很感兴趣,但研究表明,也可以使用 TENGs 为包括电视在内的大型电子设备供电。

审核编辑黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 发电机
    +关注

    关注

    26

    文章

    1616

    浏览量

    67528
收藏 人收藏

    评论

    相关推荐

    用于柔性传感的凝胶基摩擦纳米发电机

    随着物联网和人工智能的普及,柔性传感技术飞速发展。为满足实际应用,迫切需要寻求一种能实现可穿戴、便携且自供电的柔性传感器。摩擦纳米发电机(TENGs)作为一种新型的自供电传感装置,在柔性电子
    的头像 发表于 11-14 10:48 270次阅读
    用于柔性传感的凝胶基<b class='flag-5'>摩擦</b><b class='flag-5'>纳米</b><b class='flag-5'>发电机</b>

    什么是交流发电机?它的组成结构是什么?

    ,进而在定子绕组中产生交变电动势,从而产生交流电。 交流发电机的组成结构主要包括以下几个部分: 转子(Rotor):转子是发电机的核心部件,通常由导电材料制成,如铜或铝。转子的主要作用是产生交变磁场。在交流
    的头像 发表于 10-24 11:10 413次阅读

    汽车发电机的工作原理是什么?简单分析

    发电机的运作提供基础。 转子:转子是发电机旋转的部分,通常由导电材料制成,如铜线。当转子在磁场旋转时,导电
    的头像 发表于 10-24 09:26 287次阅读

    风力发电机由哪些结构组成?简单分析

    风力发电机是一种将风能转换为电能的设备,它主要由以下几个主要结构组成: 风轮(叶片和轮毂) : 叶片 :通常由复合材料制成,如玻璃纤维或碳纤维,以确保强度和轻量化。叶片的设计对风力发电机的性能
    的头像 发表于 10-23 14:16 387次阅读

    发电机失磁对发电机自身的影响有哪些

    过热 原因分析 :失磁后,发电机转子的磁场减弱,导致转子电流增加,从而产生额外的热损耗,使转子温度升高。 影响 :长期过热可能导致转子材料性能下降,甚至损坏。 1.2 定子绕组过热 原因分析 :失磁后,发电机的励磁电流减少,导致
    的头像 发表于 09-26 18:14 634次阅读

    发电机转子一点接地如何处理

    故障原因分析 发电机转子一点接地故障的原因主要有以下几种: 1.1 机械损伤 发电机转子在运行过程,由于振动、摩擦等原因,可能导致转子绕组的绝缘层受到损伤,从而引发接地故障。 1.2
    的头像 发表于 08-20 17:05 1150次阅读

    永磁发电机功率因数的调整方法有哪些

    永磁发电机是一种利用永磁材料产生磁场的发电机,具有体积小、重量轻、效率高、维护简单等优点。在实际应用,提高永磁发电机的功率因数对于提高
    的头像 发表于 06-13 14:47 1296次阅读

    发电机组远程管理,提升管控力,降低运成本

    解决方案,在提高发电机组的运行效率、降低运成本,并通过数据分析和预测性维护来减少发电机组停机造成损失。PLC远程控制模块发电机组运的痛点
    的头像 发表于 05-07 15:46 444次阅读
    <b class='flag-5'>发电机</b>组远程管理,提升管控力,降低运<b class='flag-5'>维</b>成本

    自供电气体传感器未来发展机遇与挑战

    在自供电气体传感器,最普遍使用的能量采集器包括摩擦纳米发电机TENG)、压电纳米
    发表于 01-08 09:26 689次阅读
    自供电气体传感器未来发展机遇与挑战

    基于生物友好材料壳聚糖的摩擦纳米发电机的最新研究

    日前,国际权威期刊Nano Energy杂志发表了北京航空航天大学可靠性与系统工程学院智能检测与诊断团队与中国工程物理研究院研究生院基于生物友好材料壳聚糖的摩擦纳米发电机的最新研究成果
    的头像 发表于 01-03 11:39 832次阅读
    基于生物友好<b class='flag-5'>材料</b>壳聚糖的<b class='flag-5'>摩擦</b><b class='flag-5'>纳米</b><b class='flag-5'>发电机</b>的最新研究

    MXene水溶液润滑的长寿命高电流密度摩擦伏特纳米发电机

    摩擦伏特纳米发电机(TVNG)具有高电流密度、低匹配阻抗和连续输出等特点,有望解决小型电子器件的供电问题。
    的头像 发表于 12-11 09:25 864次阅读
    MXene水溶液润滑的长寿命高电流密度<b class='flag-5'>摩擦</b>伏特<b class='flag-5'>纳米</b><b class='flag-5'>发电机</b>

    基于液-固摩擦纳米发电机的微流控芯片,用于微液滴参数的无创自动力监测

    本研究提出了一种基于液-固摩擦纳米发电机的微液滴监测方法算法,它可以实现对微液滴参数的无创和自动力监测。可以通过电信号的脉冲频率和t得到微液滴的频率、长度和速度。
    的头像 发表于 12-05 15:23 807次阅读
    基于液-固<b class='flag-5'>摩擦</b>电<b class='flag-5'>纳米</b><b class='flag-5'>发电机</b>的微流控芯片,用于微液滴参数的无创自动力监测

    二维材料增强光纤

    材料可用于涂覆其他材料,以增强其功能并更好地利用其光学特性。来自中国科学院和北京大学的刘忠范研究小组在最近发表的《自然纳米技术》杂志上描述了他们如何增强二维
    的头像 发表于 12-01 06:34 349次阅读

    二维材料层的共振拉曼光谱

      拉曼光谱一直是表征石墨烯、六方氮化硼或过渡金属硫属化物 (TMD) 等二维材料的最重要的测量技术之一。分析其拉曼光谱可以揭示有关层数、电荷掺杂或应力和应变状态的信息。二维
    的头像 发表于 11-30 15:34 481次阅读
    <b class='flag-5'>二维</b><b class='flag-5'>材料</b>层的共振拉曼光谱