0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

UnitedSiC在追求精益求精的过程中不断推动SiC进步

UnitedSiC 来源:UnitedSiC 2023-01-04 14:33 次阅读

完美的半导体开关总是近在咫尺,但又远在天边,但是人们仍在不断努力追寻,以期在电动车等重要应用中获得更高的功率转换效率。本文探讨了SiC FET共源共栅结构是如何提供最佳性能和一系列其他好处的。

寻找完美开关

电动车中装满了需要动力的电子器件,从牵引逆变器到车载充电器和辅助电源,比比皆是。无论哪种,要实现高效,都需要使用开关模式技术生成电压轨,而这需要半导体在高频下运行。该应用的理想开关应该在打开时电阻接近于零,在关闭时没有漏电,且击穿电压高(图1)。当开关处于两种状态之间的过渡期时,不应有瞬态功耗,且任何残余损耗导致的开关温度上升都应该非常小。经过多年发展,推出的半导体技术比以往任何时候都靠近理想状态,但是人们的期望也有了变化,对理想开关的寻找仍在继续。

5011e8ba-8bf3-11ed-bfe3-dac502259ad0.jpg

【图1:理想开关】

理想开关的候选者

今天的开关选择多种多样,IGBT因低导电损耗而受到极大功率应用的青睐,MOSFET则凭借能尽量减小相关组件(尤其是磁性元件)体积和成本的快速开关能力占领了大部分中低功率应用。传统MOSFET采用硅技术,但是现在,碳化硅(SiC)也因其特有的低动态损耗、低导电损耗和高温下运行优势而受到青睐。它向着难以企及的理想开关又迈进了一步,但是还有另一个更好的方法,那就是将SiC JFET与低压硅MOSFET以共源共栅结构一同封装,从而获得所谓的“SiC FET”。简言之,Si-MOSFET提供简单的非临界栅极驱动,同时将常开JFET转变成常关共源共栅,并附带一系列胜过硅或SiC MOSFET的优势。图2显示的是SiC FET中的IGBT、平面SiC MOSFET和JFET的基本构造,均为1200V等级。

50274afc-8bf3-11ed-bfe3-dac502259ad0.jpg

【图2:IGBT、SiC MOSFET和SiC JFET构造】 从图2中可以清楚地看出,在MOSFET或JFET中,SiC的较高临界击穿电压大幅减薄了漂移层,使其约为IGBT中硅漂移层厚度的十分之一,相应电阻也会较低。硅IGBT通过在较厚的漂移层中注入大量载流子来降低电阻,而这会导致100倍的存储电荷,在每个开关周期,这些电荷都必须出入漂移层。这会带来相对较高的开关损耗和不低的栅极驱动功率要求。SiC MOSFET和JFET是单极器件,电荷仅进出器件电容,因而动态损耗要低得多。 现在,将SiC FET与SiC MOSFET比较。SiC FET沟道中的电子迁移率要好得多,因而在相同电阻下,晶粒可以小得多,所以它的电容较低,开关更快,或者在相同晶粒面积A下,导通电阻RDS(ON)较低。因此,性能表征RDS(ON).A是一个关键指标,表明了在给定性能下每个晶圆是否可能得到更多晶粒,以及随之而来的成本节省,或表明给定晶粒面积下的导电损耗是否能降低。同理,性能表征RDS(ON).COSS可量化导通电阻和输出电容之间的相互作用,该值进行了折衷以实现给定额定电压,从而增减开关损耗。 在保持其他要素不变的情况下,让每个晶圆产生更多晶粒同时提高开关速度这种两全其美的好事也有一点不利之处,那就是散热的面积变小了。碳化硅的导热系数比硅好3倍,这对散热有利,而且碳化硅还能在更高的平均温度和峰值温度下运行。 为了获得这些优势,最新一代SiC FET(第四代)采用晶圆减薄法降低了电阻和热阻,并采用银烧结晶粒粘接法获得了比焊料好6倍的导热系数,最终效果是提升了可靠性,因为结温低且距离最大绝对值有很大的裕度。 与SiC MOSFET相比,SiC FET有很多优势,具体优势因应用而异,但是可以用重要性能表征和特征的雷达图来总结(图3)。

5030d6c6-8bf3-11ed-bfe3-dac502259ad0.png

【图3:SiC FET在不同应用中的优势雷达图】

图三表明了UnitedSiC第四代SiC FET在多个性能比较后的优势,显示了它无论高温还是低温,以及其他方面都有不凡的性能。

实际结果证实了SiC FET的前景

UnitedSiC已经用图腾柱PFC级设计证实了SiC FET的有效性,该设计可在连续导电模式下工作并采用“硬”开关,这是典型的电动车车载充电器前端设计。转换器额定功率为3.6kW,输入85-264V交流电,输出390V直流电,在TO-247-4L封装中安装了18或60毫欧第四代SiC FET,开关频率为60kHz。图4显示的是系统效率图,从图中可以看出,在将一个18毫欧SiC FET用于高频高低两侧开关位置时,在230V交流电下,效率达到峰值99.37%。在最高的3.6kW输出下,这些SiC FET一共耗散16W能量,无效能量仅占0.44%,因而需要散出的热量极少。

5061330c-8bf3-11ed-bfe3-dac502259ad0.jpg

【图4:采用SiC FET的图腾柱PFC级的能效达到99.37%】 在电动车中还有一个具备隔离功能的降频级,可将牵引电池电压降至12V,它通常与LLC转换器一同实施,后者是目前实现高能效时的首选拓扑。LLC转换器在高频下通过共振方式开关,以实现最高性能,而SiC FET再次成为一个好选择。在3.6kW下,以500kHz频率开关时,一对第四代750V 18毫欧MOSFET耗散的功率还不到每个6.5W,其中包括导电损耗、开关损耗和体二极管损耗。 牵引逆变器是节能的重点部件,而SiC FET可以取代IGBT以切实提高能效。开关频率维持在低水平,通常为8kHz,即使采用SiC器件也是如此,因为磁性元件是发动机,它的体积不会随着逆变器频率提高而直接缩小。要实现显著改进,可以替换一个IGBT及其并联二极管,例如可以用六个并联的6毫欧SiC FET来替代,这种方法可以在200kW输出电压下将半导体效率提升1.6%,使其达到99.36%,这表示功率损耗降低了三分之一以上,也就是3kW。在更高负载下,也就是车辆行驶时通常会达到的负载下,它的表现会更好,损耗甚至会降至IGBT技术的五分之一到六分之一。所有这些同时还伴随着低得多的栅极驱动功率和无“拐点”电压的优势,因而在轻负载下更好控制。过程中的较低损耗意味着散热器体积、重量和成本的缩减以及更好的单次充电行驶里程,因而额外花费的半导体单元成本很快就会被抵消。

我们达到尽善尽美了吗?

没有一家半导体制造商敢于声称它们的开关是完美的,但是既然功率转换器效率已经超过99%并精确到小数点后,就表示我们正在接近完美开关。这是SiC FET带来的,而且您可以使用UnitedSiC网站上的SiC FET-JET计算器亲自尝试,它可以计算各种交直流和直流拓扑的损耗。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    334

    文章

    27502

    浏览量

    219731
  • 逆变器
    +关注

    关注

    285

    文章

    4731

    浏览量

    207133
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2839

    浏览量

    62714

原文标题:UnitedSiC在追求精益求精的过程中不断推动SiC进步

文章出处:【微信号:UnitedSiC,微信公众号:UnitedSiC】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性能和使用寿命
    发表于 01-04 12:37

    3D打印技术,推动手板打样从概念到成品的高效转化

    相关数据,有效规避传统大规模生产中容易造成的材料浪费和库存积压问题,做到“能省则省”。尤其是一小批量生产或定制产品的过程中,3D打印技术可以通过数字文件直接进行生产,节省模具的制造成本,为制造企业成功
    发表于 12-26 14:43

    SiC功率器件的特点和优势

    SiC(碳化硅)功率器件正逐渐成为现代电力电子系统的重要技术,其相较于传统的硅(Si)器件,特别是高功率、高效率和高频率应用的优势日益显现。Wolfspeed 等公司推出的
    的头像 发表于 12-05 15:07 362次阅读
    <b class='flag-5'>SiC</b>功率器件的特点和优势

    PLC数据采集实施过程中存在的问题及解决方案

    PLC数据采集工业自动化领域的实施过程中,遇到了一系列显著的挑战与痛点,这些痛点直接影响了数据采集的效率、准确性和成本效益。
    的头像 发表于 11-30 14:38 266次阅读

    碳化硅SiC电子器件的应用

    随着科技的不断进步,电子器件的性能要求也日益提高。传统的硅(Si)材料某些应用已经接近其物理极限,尤其是高温、高压和高频领域。碳化硅(SiC
    的头像 发表于 11-25 16:30 790次阅读

    LM5145pre-bias启机过程中的电压反灌问题

    电子发烧友网站提供《LM5145pre-bias启机过程中的电压反灌问题.pdf》资料免费下载
    发表于 09-27 10:19 0次下载
    LM5145<b class='flag-5'>在</b>pre-bias启机<b class='flag-5'>过程中</b>的电压反灌问题

    SiC器件电源的应用

    SiC(碳化硅)器件电源的应用日益广泛,其独特的物理和化学特性使得SiC成为提升电源效率、可靠性及高温、高频性能的关键材料。以下将详细探讨SiC
    的头像 发表于 08-19 18:26 897次阅读

    比较器转换的过程中为什么存在振荡?

    比较器是一个简单的概念-输入端对两个电压进行比较,输出为高或者低。那么,转换的过程中为什么存在振荡?当转换电平缓慢改变的时候,这个现象经常会发生。常常是由于输入信号存在噪声,因此
    发表于 08-19 07:12

    RIGOL产品材料应力测试过程中的应用

    、强度、刚度、稳定性等,可以精确地控制产品质量。本篇解决方案将介绍RIGOL产品材料应力测试过程中的应用。
    的头像 发表于 07-12 17:01 327次阅读
    RIGOL产品<b class='flag-5'>在</b>材料应力测试<b class='flag-5'>过程中</b>的应用

    电容充放电过程中电压的变化规律

    电容充放电过程中电压的变化规律是一个非常重要的电子学课题,涉及到电容器的基本工作原理和特性。在这篇文章,我们将详细探讨电容充放电过程中电压的变化规律,包括电容的基本特性、充电过程、放
    的头像 发表于 07-11 09:43 6022次阅读

    定华雷达知识讲堂:雷达物位计测量过程中的干扰有哪些?

    用户介绍一下DHE雷达物位计测量过程中产生干扰的具体因素都有哪些。 一、DHE雷达物位计测量过程中,常见的干扰可分为两种:直流干扰和交流干扰。 1、直流干扰       
    的头像 发表于 06-26 16:03 382次阅读

    测量过程中如何调节检流计的灵敏度

    检流计是一种高灵敏度的电流测量仪器,常用于测量微小电流。测量过程中,根据需要调节检流计的灵敏度是确保测量准确性的重要步骤。
    的头像 发表于 05-11 18:26 4354次阅读

    使用FreeRTOS过程中如何退出Tickless?

    使用FreeRTOS过程中,如果设置Tickless,那要怎么退出呢?进入Tickless模式的话应该是吧系统滴答中断给关闭了,如果我没有外部中断的情况下,那系统是不是就不会唤醒了,百思不得其解,还望高人指点一二
    发表于 04-17 06:26

    电机启动与运行过程中,如何对电机堵转进行诊断?

    电机启动与运行过程中,如何对电机堵转进行诊断?
    发表于 02-19 07:17

    激光切割过程中,如何减少热影响区

    编辑:镭拓激光在激光切割过程中,热影响区的大小是影响切割质量的重要因素之一。为了减少热影响区,可以采取以下措施:1.调整切割参数:激光切割的切割参数是决定热影响的主要因素之一。通过调整激光功率
    的头像 发表于 01-26 15:26 951次阅读
    <b class='flag-5'>在</b>激光切割<b class='flag-5'>过程中</b>,如何减少热影响区