0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

对话机器人之LaMDA

深度学习自然语言处理 来源:NLP日志 2023-01-04 14:49 次阅读

来自:NLP日志

提纲1 简介 2 LaMDA 3 总结

1 简介

LaMDA是在DeepMind的Sparrow跟openai的instructGPT之前由谷歌提出的对话机器人,全称Language Models for Dialog Applications,是一个在海量对话跟web数据上进行预训练再在人工标注数据上做进一步微调后得到的参数量高达137B的大模型。LaMDA除了在生成文本质量有所提升外,通过在人工标注数据上做进一步finetune以及让模型学会检索利用外部知识源的能力,使得模型在安全性以及事实性这两个关键问题上获得明显提升。

安全性指的是模型的回复应该满足一系列人为价值观,例如没有歧视跟偏见,不会生成伤害性建议。事实性指的模型的回复应该符合事实,跟外部知识源保持一致,而不是一本正经的胡说八道。‍‍‍‍‍‍‍

83dd799a-884f-11ed-bfe3-dac502259ad0.png

图1: LaMDA在生成文本在多个指标下有明显提升

2 LaMDA

Pre-training

LaMDA采用的是纯decoder的结构,类似于GPT,使用了46层Transformer,模型参数量高达130B,是Meena的50倍。预训练的任务是预测文本中的下一个token,解码策略跟Meenay一致,都是从top-40结果采样得到16个候选回复,再基于候选回复的对数似然得分跟长度选择最优的回复。不同于此前的对话模型只在对话数据上训练,LaMDA的预训练数据集包括对话数据(1.12B)和其他web文档数据(2.97B)。

83ffe962-884f-11ed-bfe3-dac502259ad0.png

图2: LaMDA预训练任务‍‍‍‍

Finetune

LaMDA的finetune包括两部分,一部分是针对生成文本质量跟安全性,另一部分则是学习如何利用外部的信息检索系统。其中质量(SS I)可以从三方面评估,分别是sensibleness(文本是否合理,跟历史对话是否有冲突),Specificity(对于前文是否有针对性,避免笼统回复,例如用户提问“I love Eurovision”,模型生成一个笼统回复“Me too”就不符合预期),Interestingness(文本是否能引起某人注意或者好奇,是否是超出期待的巧妙回复)。而安全性(Safety)的目标则是要符合谷歌AI的基本原则,避免生成会造成伤害的不符合预期的结果,或者带有偏见跟歧视。

a)Finetuning for quality and safety

这部分的finetune既包括给定上文生成回复的生成任务,也包括评估回复质量跟安全性的判别式任务。对于生成任务,训练样本格式由“”(上文,哨兵,回复)三部分拼接而成,损失只计算其中response相关那部分,也就是在给定历史上文条件下,只计算模型生成回复跟期望回复之间的损失。而对于判别任务,训练样本则是“” (上文,哨兵,回复,属性,得分)五部分拼接得到,损失只计算属性对应的rating得分损失,也就是在给定历史上文跟模型回复条件下,计算特定属性下的模型得分跟人工标注结果之间的损失。这种LaMDA同时用于生成跟判别的设计能够实现一个更佳高效的流程,在生成回复后,使用判别模型打分时需要对应指标的概率P(|),而生成模型已经处理过了,所以只需要在额外处理少量的跟attribute-name相关的token即可。

Finetune过程先对LaMDA的判别任务进行优化,使得模型可以预测候选回复的质量得分跟安全性得分,然后过滤掉安全性得分低于阈值的候选回复,再根据质量得分对候选回复进行排序(3*P(sensibleness)+P(specificity)+P(interestingness)),选择其中得分最高的回复作为模型生成的结果。再利用已经训练后LaMDA的打分模型,筛选出高质量的训练数据,用于LaMDA的生成任务的finetune,使得模型可以生成高质量的回复。根据下图也可以看到利用高质量数据进行的finetune让模型在各方面都有了明显的提升。

841e2864-884f-11ed-bfe3-dac502259ad0.png

图3: finetune模型在多个指标上的提升

b)Finetuning to learn to call an external information retrieval system

这部分也称为Groundedness,针对语言模型的可能生成看起来可信,但是违背事实的幻视问题,LaMDA通过学习使用利用外部知识源去缓解这个问题。LaMDA构建一个包含信息检索系统,计算模块,翻译模块的工具(简称TS),这部分的finetune也包括两个子任务,第一个是将历史上文跟模型回复一起输入到模型中,生成对应的检索query。第二个子任务是将历史上文+模型回复+检索结果一同输入到模型中,让模型决定是生成新的检索query或者生成最终回复(根据生成的第一个字符串决定,如果是TS,则继续检索,如果是User则返回对应结果)

8461f1d4-884f-11ed-bfe3-dac502259ad0.png

图4: LaMDA Search流程‍

在具体推理流程中,只用一个LaMDA模型,但是做了多个子任务,具体过程中该执行哪个子任务,则由当前输入的prompt决定,例如当前输入prompt是LaMDA to user就对应自动生成回复,如果当前prompt是LaMDA-Base to LaMDA-Research就对应生成检索query。

3 总结

从LaMDA跟后续的Sparrow,我们也可以看到一些共同点。1)可以使用一个强大的模型同时处理多个不同任务。‍‍‍‍2)finetune阶段高质量数据对于模型的最终性能影响颇大,为了得到这些高质量的数据,LaMDA跟Sparrow在搜集finetune数据有一套严格的方法论。3) 让模型学习检索利用外部知识源,可以缓解模型幻视的问题,让模型生成结果更佳有理可依,也让模型可以回答与时俱进的问题。‍‍‍‍‍‍‍‍‍‍‍‍‍4)为生成文本的安全性设计额外的子任务,从而缓解敏感性的问题。LaMDA的成功,依旧贯彻着大力出奇迹的思路,不仅模型的参数量庞大,预训练的语料庞大,连finetune阶段的人工标注数据也不是一般人可以承受的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    212

    文章

    28887

    浏览量

    209513
  • 模型
    +关注

    关注

    1

    文章

    3406

    浏览量

    49457

原文标题:对话机器人之LaMDA

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【书籍评测活动NO.58】ROS 2智能机器人开发实践

    从 PC 到智能手机,下一个更大的计算平台是什么? 最佳答案可能是 机器人 ! 如果设想成真,则需要有人为机器人“造脑”,即打造适配的计算平台及操作系统。 就像以计算机为平台的计算机时代,和以手机为
    发表于 03-03 14:18

    AI智能电话机器人对电子行业的影响是什么

    一、AI 智能电话机器人的基本概念 AI 智能电话机器人是融合人工智能技术,模拟人类与客户进行电话沟通交流的自动化程序系统。它借助先进的语音识别、自然语言处理和对话管理等技术,能够自动拨打
    的头像 发表于 01-23 09:45 135次阅读

    密与库卡机器人达成战略合作

    近日,伊密与库卡机器人(广东)有限公司(以下简称“库卡”)在伊密全球创新中心举行战略签约合作仪式。
    的头像 发表于 01-22 10:11 436次阅读

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主机器人的定位系统,自主机器人
    发表于 01-04 19:22

    《具身智能机器人系统》第10-13章阅读心得具身智能机器人计算挑战

    阅读《具身智能机器人系统》第10-13章,我对具身智能机器人的工程实践有了全新认识。第10章从实时性角度剖析了机器人计算加速问题。机器人定位中的SLAM算法需要处理两个计算密集型任务:
    发表于 01-04 01:15

    【「具身智能机器人系统」阅读体验】+两本互为支持的书

    最近在阅读《具身智能机器人系统》这本书的同时,还读了 《计算机视觉PyTorch数字图像处理》一书,这两本书完全可以视为是互为依托的姊妹篇。《计算机视觉PyTorch数字图像处理》是介绍
    发表于 01-01 15:50

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    近年来,人工智能领域的大模型技术在多个方向上取得了突破性的进展,特别是在机器人控制领域展现出了巨大的潜力。在“具身智能机器人大模型”部分,作者研究并探讨了大模型如何提升机器人的能力,大模型存在
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    感谢 感谢电子发烧友网社区给予《具身智能机器人系统》试读机会。在这知识的盛宴中,我感受到社区的关怀与支持。定不负期望,认真研读,分享所学,回馈社区。 一、本书大纲 《具身智能机器人系统》是一本
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+初品的体验

    《具身智能机器人系统》 一书由甘一鸣、俞波、万梓燊、刘少山老师共同编写,其封面如图1所示。 本书共由5部分组成,其结构和内容如图2所示。 该书可作为高校和科研机构的教材,为学生和研究人员提供系统
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得具身智能机器人系统背景知识与基础模块

    要给AI这个聪明的“头脑”装上一副“身体”。这个“身体”可以是一部手机,可以是一台自动驾驶汽车。而人形机器人则是集各类核心尖端技术于一体的载体,是具身智能的代表产品。与传统的软件智能体不同,具身智能
    发表于 12-19 22:26

    鸿蒙机器人与鸿蒙开发板联动演示

    鸿蒙机器人与鸿蒙开发板联动演示,机器人的角色为迎宾机器人,开发板负责人宾客出现监听
    发表于 12-02 14:55

    开源项目!用ESP32做一个可爱的无用机器人

    简介 作者在完成硕士论文答辩后,利用空闲时间制作了一个他一直想做的机器人——可爱无用机器人。 无用机器人原理是一个连接到开关的电机,通过逻辑门控制。当开关被推到“开”时,机器人启动
    发表于 09-03 09:34

    Al大模型机器人

    理解能力强大: AI大模型机器人可以理解和生成自然语言,能够进行复杂的对话和语言任务。它们能够识别语言中的语义、语境和情感,并据此作出适当的回应。广泛的知识储备: 这些模型基于大规模的数据集进行训练,拥有
    发表于 07-05 08:52

    其利天下技术·搭载无刷电机的扫地机器人的前景如何?

    了使用体验,其发展前景愈发广阔。 1. 搭配无刷电机的扫地机器人优势 无刷电机相较于传统有刷电机,具有更高的效率、更低的噪音和更长的使用寿命。这一技术的应用,使得扫地机器人能够在同等能耗下提供更强
    发表于 05-05 15:03

    AI企业Figure发布人形机器人01,具备与人对话能力,能理解情境

    这款机器人的独特之处是使用OpenAI的大型语言模型进行正常且完整的双向对话,由于它能够接受多模态输入,从而拥有更高层次的视觉和语言智能。Figure神经网络则能提供快速、精细、灵活的机器人动作表现。
    的头像 发表于 03-14 10:40 866次阅读