没有人愿意随着年龄的增长而加速他们的认知退化。运动脑震荡造成长期伤害的严重现实导致最近重新思考人类需要保护一项极其重要的资产-大脑-免受身体伤害。
科学家 Mikhail Lebedev、Ioan Opris 和 Manuel Casanova 撰写并正在研究大脑增强的主题。“项目负责人、北卡罗来纳州杜克大学的高级研究员列别杰夫说,到 2030 年,大脑增强的现实——通过大脑植入物增强智力——将成为日常生活的一部分,‘人们将不得不面对现实这种新范式。'”
倾向于技术的未来主义思想家雷·库兹韦尔 (Ray Kurzweil, 1948–) 明确表示,与电子计算机的处理速度相比,人类大脑的速度非常慢。尽管人脑具有并行处理大量信息的内在能力,但 Kurzweil 认为,不久之后数字计算机计算速度的提高将远远超过人脑的能力。他建议,如果科学家能够了解大脑如何进行混乱和复杂的活动,然后组织它们以进行理解,这将导致计算机处理方面的突破,这将远远超过任何可能导致人类智力提高的生物学改进。这种对大脑内部编程背后机制的理解可能会自然而然地改进人工智能 (AI)。
人工神经网络
人工智能领域的进展最近经历了快速转变,因为技术人员受到大脑生物神经网络 (BNN) 的启发,这是人类和动物思维的基础,类似地被采用到人工神经网络 (ANN) 中。人工神经网络的未来发展可能会导致机器人和人类认知增强方面的突破——提供机器和人类智能的动态增长。
人工神经网络涉及一个连接的节点系统,其行为方式类似于人类神经元,即传递神经冲动的细胞。神经元还可以处理信息并与其他神经元建立动态连接。这个过程允许学习。在 ANN 中,这种信息流通过非线性函数表示的复杂过程发生,通过使输出权重能够随时间动态响应的数学总和。这种效果允许强化学习发生。
人工神经网络已经取得了重大进展,在机器视觉、人类语音识别和医学诊断等领域为技术人员提供了帮助。人工神经网络利用最先进的电子元件,包括现场可编程门阵列 (FPGA)、中央处理器 (CPU)、视觉处理单元 (VPU)、数字信号处理器 (DSP)、人工智能加速器、专用集成电路 (ASIC)、和片上系统 (SoC)。
让未来成为可能
一家公司,英特尔®,正在使未来最令人惊叹的体验成为可能。利用内存和可编程解决方案的最新进展,英特尔正在颠覆行业并通过支持所有智能和连接的事物来解决全球挑战。英特尔提供FPGA、SoC、复杂可编程逻辑器件 ( CPLD )、VPU和补充技术,例如电源解决方案,为全球客户提供高价值的解决方案。
FPGA 为具有挑战性的应用(例如神经网络)提供了一个灵活的平台。从某种意义上说,FPGA 提供了一块画布,一种可以用来构建基础的tabula rasa (白板)。FPGA 内在的结构提供了知识产权 (IP) 块和组件来解决神经网络设计挑战,例如计算、逻辑和内存资源需求。
神经网络的世界是一个充满持续计算的世界。FPGA 加速器和浮点 DSP 设计与支持处理器相结合,为产品提供了速度、可预测性和能效,以应对正在进行的大数据分析、设备虚拟化和 ANN 固有的机器学习问题。在这个快速发展的领域,可重新编程的 FPGA 允许不断实施最新的算法和神经网络拓扑结构,确保高性能计算来增强人类的认知能力。英特尔 Stratix 10 FPGA或英特尔 Stratix ® V 高带宽 FPGA等高性能、可精确适配的 FPGA 软处理器是合适的选择。
FPGA 的复杂、内部化控制和信号处理可实现密集信号处理功能的快速高效移动。低功耗设计是重中之重,因此像人脑一样,神经活动处于等待状态时消耗的功率最小。与固定功能图形处理单元 (GPU) 相比,FPGA 具有功耗优势,是绝佳的选择。允许在并行处理模式下进行计算可以加速性能,从而改善认知模仿性能。通过传感相机整合视觉系统进行物体识别的能力提供了一种电物理传感,随着更多传感器的开发,这种传感可以随着时间的推移而扩展,有助于智能地接收和处理信息的能力。
结论
今天的电子元件使社会能够增强我们的智力。支持模拟和扩展人类智能能力的神经网络的部件、系统和解决方案正在为机器人和人类开启新的机会来感知和实现新的可能性。
审核编辑黄昊宇
-
神经网络
+关注
关注
42文章
4762浏览量
100529 -
AI
+关注
关注
87文章
30098浏览量
268375 -
人工智能
+关注
关注
1791文章
46840浏览量
237517
发布评论请先 登录
相关推荐
评论