0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

2D催化剂层电催化活性的等离子体成像

清新电源 来源:催化开天地 2023-01-08 09:08 次阅读

研究非均相电催化剂的局部电催化活性,对于理解电催化反应并进一步提高其性能至关重要。

然而,由于缺乏原位成像技术和以原子精度调整结构的方法,将电催化活性与二维(2D)电催化剂的微观结构相关联仍然面临巨大的挑战。

基于此,中国科学技术大学刘贤伟教授(通讯作者)等报道了利用等离子体成像技术原位探测2D材料的层依赖性电催化活性的一般方法。

该方法用于可视化单个2D MoS2纳米片的表面电荷密度和电催化活性,从而使层依赖性电催化活性与单个MoS2纳米片材的表面电荷浓度相关。

a6d216f8-8ee0-11ed-bfe3-dac502259ad0.jpg

理论研究表明,MoS2层之间的弱范德华键可以为电荷的层间隧穿产生能量势垒。较厚的MoS2纳米片中的电荷必须在层间隧穿期间克服较高的能量势垒,导致较低的表面电荷密度和较低的催化活性。

研究结果表明,较薄的MoS2纳米片可积聚更高浓度的电荷,从而实现比较厚的纳米片更高的导电性。因此,电荷层间隧穿能力和表面电荷密度调制的电导率都有助于较薄的MoS2更好的催化效率。

a6d93e6a-8ee0-11ed-bfe3-dac502259ad0.jpg

更重要的是,可以直观地看到表面电荷的非均质分布,与MoS2的电催化性能有关。作者还演示了该技术在研究单个MoS2纳米片上的电催化HER时的使用。

电化学电流由等离子体信号变化转换而来,揭示了MoS2在-0.4 V附近的显着析氢。

结果表明,层间电荷转移在2D材料的电催化中起着重要的作用,也可用来解释纳米结构半导体催化剂和TMDs的高电催化活性。

a6df1a56-8ee0-11ed-bfe3-dac502259ad0.jpg











审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • TMDS
    +关注

    关注

    1

    文章

    21

    浏览量

    15486

原文标题:​中科大刘贤伟Nature子刊:2D催化剂层电催化活性的等离子体成像

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是等离子体

    等离子体,英文名称plasma,是物质的第四态,其他三态有固态,液态,气态。在半导体领域一般是气体被电离后的状态,又被称为‘电浆’,具有带电性和流动性的特点。
    的头像 发表于 11-05 09:34 31次阅读
    什么是<b class='flag-5'>等离子体</b>

    什么是电感耦合等离子体,电感耦合等离子体的发明历史

    电感耦合等离子体(Inductively Coupled Plasma, ICP)是一种常用的等离子体源,广泛应用于质谱分析、光谱分析、表面处理等领域。ICP等离子体通过感应耦合方式将射频能量传递给气体,激发成
    的头像 发表于 09-14 17:34 369次阅读

    电感耦合等离子体的基本原理及特性

    在电感耦合等离子体系统中,射频电源常操作在13.56 MHz,这一频率能够有效地激发气体分子产生高频振荡,形成大量的正离子、电子和中性粒子。通过适当调节气体流量、压力和射频功率,可以实现等离子体的高温、高密度和高均匀性。因此,I
    的头像 发表于 09-14 14:44 436次阅读

    Aigtek助力大赛 | 第四届全国大学生等离子体科技创新竞赛圆满落幕!

    8月9日~11日,2024第四届全国大学生等离子体科技创新竞赛于西安交通大学创新港校区圆满落幕,作为大赛的赞助商之一,Aigtek安泰电子也携一众功放仪器产品及行业测试解决方案亮相本次大赛。全国
    的头像 发表于 08-30 11:48 472次阅读
    Aigtek助力大赛 | 第四届全国大学生<b class='flag-5'>等离子体</b>科技创新竞赛圆满落幕!

    网关助力催化剂产业升级,解决痛点问题!

    催化剂作为影响化学反应的重要媒介,在全球各行各业广泛使用。除了传统的石油化工领域,催化剂在清洁能源开发、环境保护等新兴领域也起到了关键作用。明达技术针对这一现状,自主研发新一代Mbox边缘计算网关助力催化剂产业升级!
    的头像 发表于 08-14 17:02 215次阅读
    网关助力<b class='flag-5'>催化剂</b>产业升级,解决痛点问题!

    通过结合发射和吸收光谱法比较激光等离子体的激发温度

    激光等离子体是一种在许多科学和工业领域广泛应用的重要现象。理解和测量其激发温度对于材料科学、物理学和工程学都有着至关重要的意义。近期,一篇题为《Comparison of excitation
    的头像 发表于 06-12 06:36 229次阅读

    利用氨等离子体预处理进行无缝间隙fll工艺的生长抑制

    理想的负斜率,沉积过程应能够实现“自下而上的生长”行为。在本研究中,利用等离子体处理的生长抑制过程,研究了二氧化硅等离子体增强原子沉积(PE-ALD)过程在沟槽结构中自下而上的生长。采用n2
    的头像 发表于 03-29 12:40 353次阅读
    利用氨<b class='flag-5'>等离子体</b>预处理进行无缝间隙fll工艺的生长抑制

    相调控对镍锡合金的电催化氮还原调控机制研究

    电催化氮还原反应(NRR)是在常规条件下合成氨(NH3)的一种有效方法,但其催化性能(例如:选择性、催化效率等)在很大程度上取决于催化剂的物理性质。
    的头像 发表于 03-26 09:09 616次阅读
    相调控对镍锡合金的<b class='flag-5'>电催化</b>氮还原调控机制研究

    等离子发动机的原理 等离子发动机最大推力是多少

    等离子发动机原理: 等离子发动机是一种利用电磁力将离子加速并喷射出来产生推力的发动机。它主要包括等离子体产生器、离子加速器和喷嘴等组成。下面
    的头像 发表于 02-14 18:18 5294次阅读

    掀起神秘第四态的面纱!——等离子体羽流成像

    通常在高温或高能环境中出现,如太阳、恒星、闪电、等离子体切割工具、核聚变反应等地都存在等离子体。激光诱导等离子体羽形貌成像有助于深入了解等离子体
    的头像 发表于 12-26 08:26 582次阅读
    掀起神秘第四态的面纱!——<b class='flag-5'>等离子体</b>羽流<b class='flag-5'>成像</b>

    解决方案-皮秒激光产生的等离子体对硅材料加工过程成像

      01、重点和难点 在硅材料加工和研究领域,皮秒脉冲激光激发的等离子体对于提高加工技术、开发创新设备以及加深对材料物理特性的理解都有重大研究意义。这种影响尤其体现在硅材料表面等离子体形态变化的研究
    的头像 发表于 12-19 10:53 589次阅读
    解决方案-皮秒激光产生的<b class='flag-5'>等离子体</b>对硅材料加工过程<b class='flag-5'>成像</b>

    针对氧气(O2)和三氯化硼(BCl3)等离子体进行原子蚀刻的研究

    基于GaN的高电子迁移率,晶体管,凭借其高击穿电压、大带隙和高电子载流子速度,应用于高频放大器和高压功率开关中。就器件制造而言,GaN的相关材料,如AlGaN,凭借其物理和化学稳定性,为等离子体蚀刻
    的头像 发表于 12-13 09:51 1075次阅读
    针对氧气(O<b class='flag-5'>2</b>)和三氯化硼(BCl3)<b class='flag-5'>等离子体</b>进行原子<b class='flag-5'>层</b>蚀刻的研究

    太阳能电池中表面等离子体增强光捕获技术

    光捕获技术是提高太阳能电池光吸收率的有效方法之一,它可以减少材料厚度,从而降低成本。近年来,表面等离子体(SP)在这一领域取得了长足的进步。利用表面等离子体的光散射和耦合效应,可以大大提高太阳能电池的效率。
    的头像 发表于 12-05 10:52 1198次阅读
    太阳能电池中表面<b class='flag-5'>等离子体</b>增强光捕获技术

    ATA-7030高压放大器在等离子体实验中的应用有哪些

    高压放大器在等离子体实验中有多种重要应用。等离子体是一种带电粒子与电中性粒子混合的物质,其具有多种独特的物理性质,因此在许多领域具有广泛的应用,例如聚变能源、等离子体医学、材料加工等。下面安泰电子将介绍高压放大器在
    的头像 发表于 11-27 17:40 429次阅读
    ATA-7030高压放大器在<b class='flag-5'>等离子体</b>实验中的应用有哪些

    无标记等离子体纳米成像新技术

      一种使用等离子体激元的新型成像技术能够以增强的灵敏度观察纳米颗粒。休斯顿大学纳米生物光子学实验室的石伟川教授和他的同事正在研究纳米材料和设备在生物医学、能源和环境方面的应用。该小组利用等离子体
    的头像 发表于 11-27 06:35 326次阅读