0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

介绍齿轮NVH产生的根本原因

冬至子 来源:模态空间 作者:谭祥军 2023-01-18 16:56 次阅读

在介绍齿轮NVH产生的根本原因之前,有必要对齿轮重合度这个概念作一个基本介绍。为了保证齿轮连续传动,要求齿轮的实际啮合线段B1B2大于齿轮的基圆齿距P b ,因而定义齿轮重合度εa为实际啮合线段与齿轮的基圆齿距之比(如图1所示),即

ε a = B1B 2 /Pb

齿轮重合度是一个无量纲参数,近似表明了在啮合周期内啮合齿对的平均数量,重合度越大表明同时参与啮合的齿对数目越多,每对齿的载荷小,载荷波动也小,传动越平稳。通常重合度取值在1≤ε a ≤2,取值为1表明始终只有1对齿参与啮合,而取值为2表明始终有2对齿参与啮合。在机械制造行业,通常取1.3≤ε a ≤1.4,这就表明在啮合过程中有时是1对齿啮合,有时是2对齿啮合,且交替变化。如ε a =1.3表明在齿轮转动一个基圆齿距的时间内有30%的时间是双齿啮合,70%的时间是单齿啮合。关于齿轮重合度的更详细介绍可参考相应的参考书。

2.jpg

齿轮箱结构的振动能够充分解释一种称为参数激励的现象。齿轮啮合过程中齿对数目交替出现,则根据啮合齿对的数量变化,啮合刚度相应地发生变化。此外,齿侧的接触点沿径向移动。毫无疑问,当啮合齿的数量发生变化时,啮合刚度的变化就会发生。对于渐开线直齿轮,通常是一或两对齿交替啮合。对于重合度在1~2之间的直齿轮,在节点附近是单齿啮合,在齿根、齿顶附近是双齿啮合,如图2所示。

图2 啮合的齿对交替变化

图3显示了啮合刚度对旋转角度的依赖关系。从图3左上角单对齿啮合时刚度的变化可以看出,从二者开始接触啮入时刚度直线增加,在啮合过程中先增大后减小,到二者相互脱离啮合时,又直线减小。而齿轮实际的啮合刚度如图左下角所示,它实际上是单对齿啮合刚度在一定重叠度下的叠加,左下角的虚线为单对齿的啮合刚度,实线为实际啮合过程的啮合刚度变化。随着齿轮重合度的增加,啮合刚度变化越来越小,当ε a =2时,刚度已无直线变化段了,这时刚度变化最小。并且注意到,不管重合度多大,啮合刚度都是周期性变化的。

2.jpg

图3显示了两种齿轮重合度下的啮合刚度对旋转角度的依赖关系。齿轮重合度在1和2之间被称为低重合度(LCR),齿轮重合度等于2称为高重合度(HCR)。不需要计算就可以看出,高重合度下齿轮啮合刚度的变化较小,从而导致齿轮箱振动的参数激励减少。

齿轮在啮合时,齿对啮合点始终位于啮合线(基圆的切线)上,如图4所示,而啮合力也沿这条线上。通过作用于啮合线上的啮合力FT从主动齿轮传递到从动齿轮。这个力由作用在轴支撑点大小相同、反方向力FS补偿。这些力FT和FS同时作用在主动齿轮上从而导致扭矩产生,见图5。从图3可知,啮合刚度不等于恒定值,随着啮合齿对数目的交替变化,使得啮合刚度与啮合频率的振荡是同步的。齿轮啮合刚度的振动导致从动齿轮的自激角振动,从而产生了时变力FT和F S 。作用在轴支撑位置的力是动态的,并能激发齿轮箱壳体的振动,从而产生噪声。由于啮合刚度的周期性变化,导致齿轮的受力也会出现周期性变化。正常啮合时,啮合力FT沿啮合线方向,但如果出现了故障,则将导致啮合力与啮合线之间存在一定的夹角,从而引发更大的振动与噪声问题。

图4 齿轮啮合点位于切线上

2.jpg

另一方面,单对齿轮啮合时,齿轮的啮合力作用于单对齿轮上,而当两对齿参与啮合时,啮合力是作用在两对轮齿面上。假设传递的扭矩恒定,由于齿轮的力臂恒定,那么啮合力也保持不变。但当将这个不变的啮合力作用在单齿和双齿上引起的齿轮所受的载荷是周期变化的。显然,双齿啮合时载荷小、刚度大,单齿啮合时载荷大、刚度小。也就是说,即使齿轮所传递的是恒定扭矩,但当每对齿在脱离啮合或进入啮合时,轮齿上的载荷和刚度都要发生突然增大或减小,从而形成啮合冲击。对于重合度低的直齿,啮合冲击尤为显著,其作用力和刚度变化基本上呈矩形波,见图3。对于斜齿,由于其啮合点是沿齿宽方向移动的,啮合过程的变化较为平缓,刚度变化接近正弦波。因此,轮齿的啮合冲击和啮合刚度的变化取决于齿轮的类型和重合度。

齿轮在啮合过程中,除了受到啮合冲击之外,还存在所谓的节线冲击。一对齿轮在啮合过程中,两齿齿面相接触点的速度方向除了节点以外都是不同的,使得相接触的齿面之间产生相对滑动,而相对滑动导致两齿面之间存在滑动摩擦。当啮合点通过节点时,由于轮齿受到的摩擦力在节点两侧方向不同而使齿面摩擦力有一个突然换向。这种突然的换向使轮齿受到冲击,换向的结果也使轮齿所受合力的大小及方向突然改变。当齿轮传递的扭矩不变时,齿面正压力也发生变化,这种变化反过来引起摩擦力大小的改变,把这种冲击称为节线冲击。

因此,齿轮在啮合过程中,齿面既有相对滚动,又有相对滑动。主动轮上的啮合点由齿根移向齿顶,随啮合半径逐渐增大,速度逐步增高;而从动轮上的啮合点由齿顶移向齿根,速度逐步降低。两轮速度上的差异形成了相对滑动。节点处,两轮切线速度相等,相对滑动速度为零。在主动轮上,齿根与节点之间的啮合点速度低于从动轮上的啮合点速度,因此滑动方向向下;而在节点与齿顶之间的啮合点速度高于从动轮,滑动方向向上。主动轮、从动轮都在节点处改变了滑动方向,也就是说,摩擦力的方向在节点处发生了改变,形成了节线冲击。

通过以上的分析可知,在齿轮的啮合过程中,由于主动齿轮与从动齿轮的单、双齿啮合交替变换,啮合位置、轮齿啮合刚度和载荷的周期性变化以及啮合冲击、节线冲击均会产生振动,这种振动必然含有周期性成分,反映这个周期性特征信息的就是啮合频率(GMF)及其高次谐波。啮合频率是齿轮的转速频率f与齿数z的乘积(实际上是1秒钟之内齿轮的啮合次数,齿的转频表示每秒钟的转动圈数,齿数表示每圈的啮合次数,因此,二者的乘积就是每秒钟的啮合次数,即啮合频率),即

f GMF = f 1 ·z 1 =f 2 ·z2

式中,f1 、f2分别表示主动轮、从动轮的转频;z 1 、z2表示主动轮、从动轮的齿数。

实际上,在一个啮合周期1/fGMF内,啮合的齿轮发生了进入啮合、脱离啮合、节线冲击等多次冲击过程,因此在齿轮的振动信号中必然包含了啮合频率fGMF及其高次谐波2f GMF 、3f GMF 、…等成分。

除了上面描述的啮合刚度与作用力周期性变化之外,对于完美的齿轮啮合而言,齿轮对应该满足以下条件:

· 几何完美 ,这说明齿轮不存在制造误差,生产出来的齿轮不存在形变。

· 对中完美 ,完全不存在装配问题,不会出现不对中,错位等情况。同时满足齿轮对中的一个齿轮的节圆齿厚等于另一齿轮的节圆齿槽宽,即二者能无齿侧间隙啮合。

· 刚度无限大 ,这样能保证在啮合过程中受作用力时不发生变形。

满足以上条件的完美齿轮在啮合时能保证齿轮对啮合点的线速度相等,即ω1R 12R 2 。但实际因齿轮变形、装配问题或啮合刚度的变化导致齿轮啮合时,ω1R 1 ≠ ω2R 2 ,存在传递误差,从而引发更大的振动噪声。

2.jpg

啮合齿轮产生了传递误差,从而使得啮合齿轮之间的摩擦加剧,这种加剧的摩擦将引发明显的尖叫声,这也就是所谓的齿轮啸叫。啸叫是一种单频噪声,类似口哨声,在任一时刻都是一个频率成分,但是这个频率成分会随着转速变化,也就是说啸叫声的频率与齿轮的啮合阶次有关,随着转速的增加而增加,如图7中高亮的阶次线所示。

2.jpg

除了受到正常啮合冲击之外,啮合的齿轮还可能受到外部波动载荷的作用,即输入扭矩的变化导致非传动齿轮间的不规则的相互撞击产生的宽带随机噪声,也就是所谓的rattle噪声,如图8所示。如发动机扭矩和转速的周期性变化,导致变速箱啮合的轮齿之间不规则的相互敲击,这种敲击产生的振动与噪声通过轴承座、箱体等传播出来。另一方面,如果轮齿之间存在侧隙,在啮合过程中也将出现撞击从而产生rattle噪声。这种不规则的敲击噪声具有宽频性,即没有特定的频率特征,难以通过频率分析来定量地进行评价。

2.jpg

除了受到啮合冲击和节线冲击之外,齿轮还可能存在故障,如齿轮磨损、制造缺陷、安装缺陷、局部缺陷等异常状态,这些异常状态将会导致的显著的NVH问题。除了齿轮自身的故障之外,轴承的故障可将使NVH问题加剧,如当齿轮遇到滚动轴承滚道上的缺陷时,啮合可能会引起较小的机械冲击,引起结构振动。这些振动通过齿轮箱结构进一步传递。

审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • LCR
    LCR
    +关注

    关注

    0

    文章

    130

    浏览量

    20712
收藏 人收藏

    评论

    相关推荐

    烦恼是焦虑加重的根本原因

    进入你的潜意识之中,作为一种焦虑的性格进入个体之中,人的性格和个性主要是在这种无数次的经历的组合下形成的。记忆的过程只是对事件的叙述,而这种内在的状态才是形成性格的根本原因。记忆是有形的,状态是无形
    发表于 10-16 10:35

    电池漏液的根本原因?如何判定电池是否漏液?

    电池漏液的根本原因?如何判定电池是否漏液?
    发表于 03-11 06:57

    引起调节的根本原因是什么

    西安交通大学17年3月课程考试《计算机控制技术》作业考核试题一、单选题(共 30 道试题,共 60 分。)1.引起调节的根本原因是偏差,所以在下列说法中,不正确的是( )A. 偏差的正、负决定
    发表于 09-01 08:38

    引起调节的根本原因是偏差吗

    1. 引起调节的根本原因是偏差,所以在下列说法中,不正确的是()A. 偏差的正、负决定调节作用的方向B. 偏差的大、小决定调节作用的强、弱C. 差为零,调节作用为零D. 偏差太大,调节失效正确答案
    发表于 09-10 06:31

    低功耗产生根本原因及其控制方法

    一、低功耗管理要点1、低功耗的实现(本质就是不产生多余的漏电流) a、功耗的产生根本原因:引脚之间存在电压差,电流不断流走;2、关闭单片机外部耗电器件a、利用开关电路,将其彻底断开电源;3、单片机
    发表于 12-31 08:02

    rt_assert_handler死循环根本原因是什么?

    请教:调用rt_mb_send()函数,往邮箱发消息;结果死在rt_assert_handler函数中。把这个函数中的死循环 while (dummy == 0);注释掉,代码运行正常,不知根本原因是什么?求高手赐教
    发表于 03-23 11:12

    内核oops的根本原因是什么?我们如何调试内核oops?

    问题不能在我们的实验室卡上重现。请参阅附件中的内核 oops、中断和 dmesg 信息。内核 oops 的根本原因是什么?我们如何调试内核 oops?
    发表于 04-20 06:19

    使用SPI找到无铅制造缺陷的根本原因

    使用SPI找到无铅制造缺陷的根本原因锡膏印刷在无铅制造质量中发挥着关键作用,为印刷过程SMT组装流程的后续环节部分提供了关键的基础。为使制造商能够处理回流焊后焊点的
    发表于 10-01 18:57 12次下载

    汽车芯片短缺的根本原因是什么

    根本原因 。 我们都知道汽车制造商通常有一个短期的“准时生产”管理周期,以保持低库存。受到去年年初开始在全球发酵的新冠疫情的影响,汽车厂商们纷纷调整了销售预测,向芯片代工厂提出减产要求。        其次,疫情让居家办公需求激
    的头像 发表于 12-09 11:46 5397次阅读

    DFX设计无法连贯布线的根本原因及修护

    本篇博文中的分析是根据真实客户问题撰写的,该客户的 DFX 设计无法连贯布线,存在布线重叠。本篇博文旨在演示用于缩小根本原因范围以及修复此问题的部分调试技巧。
    的头像 发表于 08-02 08:03 1544次阅读
    DFX设计无法连贯布线的<b class='flag-5'>根本原因</b>及修护

    DDR4 IP校准后硬件故障的调试方法与根本原因分析

    本篇博客将为您演示如何使用此报告来帮助加速调试,甚至完全避免硬件故障,最后确定此问题根本原因是校准完成时出现争用状况。出现争用状况的原因是由于某个多周期约束所覆盖的时序例外,由此导致在时序分析报告中并未标记此问题。
    的头像 发表于 08-02 12:02 2638次阅读
    DDR4 IP校准后硬件故障的调试方法与<b class='flag-5'>根本原因</b>分析

    时钟域交汇相关处理错误的根本原因分析

    本篇博文中的分析是根据真实客户问题撰写的,该客户发现在现场出现罕见的比特翻转, 本篇博文旨在演示用于缩小根本原因范围以及修复此问题的部分调试技巧。
    的头像 发表于 08-02 11:58 1005次阅读
    时钟域交汇相关处理错误的<b class='flag-5'>根本原因</b>分析

    网线是影响网速快慢的根本原因

    网速是大家最最关注的,无论是工作还是娱乐,那网线是影响网速快速的根本原因吗?为了帮助大家解决日常问题,科兰通讯小编为大家分析一下这个问题。 网线的种类和网速快慢是有关系的,原因如下: 确保网线与网络
    发表于 09-08 10:02 8698次阅读
    网线是影响网速快慢的<b class='flag-5'>根本原因</b>吗

    adc采集波形出现失真的根本原因

    ADC(模数转换器)是将模拟信号转换为数字信号的设备。当采集波形出现失真时,可能有多个根本原因。在下面的文章中,我将详细讨论ADC采集波形失真的各种原因,包括非线性失真、抖动、采样频率限制、噪声等
    的头像 发表于 01-09 10:48 3194次阅读

    MES系统没效果的根本原因

    电子发烧友网站提供《MES系统没效果的根本原因.docx》资料免费下载
    发表于 02-22 09:10 0次下载