0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于连续时间、∆-Σ高速ADC的宽带模拟前端技术分析

星星科技指导员 来源:ADI 作者:Gabriele Manganaro 2023-01-09 15:26 次阅读

连续时间∆-Σ (CTDS) 模数转换器ADC) 是音频系统、电话听筒和移动电子产品的首选架构。这种ADC架构可实现高效集成、减少信号链和低功耗等优势。当高动态范围和功率效率是主要要求时,CTDS ADC的性能优于其他类别的ADC,但其他类型的ADC(如流水线ADC)由于其转换宽带模拟输入信号的能力,一直是蜂窝通信基础设施系统的主流选择。

ADI公司最近推出的技术突破现在允许CTDS ADC以非常高的频率对宽带信号进行数字化处理。这克服了以前的限制,还使CTDS ADC引入的宽带系统具有显著的系统级优势,使其在低频应用中普遍存在。

本文介绍了此类最新创新的实现。特别是讨论了模拟前端,包括其核心的宽带CTDS带通ADC,用于通信和仪器仪表系统中高频信号的数字化和下变频。嵌入式带通ADC不需要外部抗混叠滤波器和驱动放大器/缓冲器,从而大大减少了信号链的元件数量和功耗,并放宽了其整体规格。此外,还集成了片上可编程数字滤波和下变频,为设计人员提供了完整且易于使用的解决方案。

连续时间∆-Σ (CTDS) 模数转换器1多年来,模数级架构一直是从高性能音频到蜂窝手机RF前端等广泛应用的首选,因为与其他类型的ADC相比具有许多优势。好处包括更高的集成便利性和低功耗,而且可能更重要的是,因为使用CTDS可以解决许多重要的系统级问题。由于许多技术缺陷,CTDS的使用以前仅限于相对较低的频率/带宽和较低的动态范围。因此,高性能奈奎斯特速率转换器,如流水线和逐次逼近型ADC,一直是高性能/高频数字化应用的主流解决方案。

然而,ADI公司推出的技术突破克服了许多先前的限制。因此,使基于CTDS的高速ADC能够实现更高的性能规格、强干扰源下的稳定性、可编程的频率响应,进而能够解决蜂窝基础设施系统和选定的高性能仪器应用中的许多重要信号处理问题。

为了更好地理解这一点,让我们考虑一个用于通信系统的经典外差接收信号链。采用主流开关电容奈奎斯特速率、高速ADC的传统方案如图1(a)所示。在这里,混频器产生的中频(IF)信号需要缓冲,并可能使用驱动放大器进行放大。奈奎斯特ADC还需要抗混叠滤波器(AAF),有时由表面声波(SAW)滤波器或多极分立SMD滤波器实现。最后,所需的IF无线电信号到达ADC。其输出以高采样速率fs(fs/2远大于中心/IF频率)计时,通过通信数字ASIC进一步处理(滤波并下变频为基带)。

poYBAGO7wbWAQAvwAABjf6Wkyd0613.png?h=270&hash=21D2FF00F9D77104CCBCEBAB8D95E4B6E1BB2C03&la=en&imgver=1

图1.通信系统的经典外差接收信号链,使用(a)具有奈奎斯特速率开关电容ADC的传统方案和(b)使用连续时间∆-Σ ADC。

使用CTDS时,相同的处理链大大简化,如图1(b)所示。由于CTDS具有阻性输入,因此可以直接由混频器驱动,不需要驱动放大器。此外,CTDS的内核包括一个CT模拟滤波器,该滤波器隐式执行AAF功能,因此可以取消2使用输入 SAW/SMD 分立滤波器。此外,CTDS还可以具有带通滤波器频率特性(实际测量示例见图2),可调谐到以所需的IF输入频率为中心,并具有显著的带外衰减。这种通带经过过采样、数字化,然后被数字抽取并下变频为基带,并以比图1(a)低得多的数据速率(和更低的功耗)提供给数字ASIC。

poYBAGO7wbeAUJZaAAMSHxXcGjU037.png?h=270&hash=C92FF0AA30093C086F3EDBEDB8D8B84CC1BE967E&la=en&imgver=1

图2.来自带通CTDS的实验数字化输出(蓝色实线),输入单音为1 GHz,带宽设置为75 MHz,中心频率为1 GHz,噪声带宽为366.2 kHz。∆-Σ频率将转换量化噪声塑造为目标通带内的低电平(较高的动态范围),而带外功率较高。带通频率特性的陷波在上图中清晰可见(以1 GHz和75 MHz宽为中心)。叠加的红色虚线表示相应的信号传输特性,在所需的输入频带上具有明显的平坦度。下图显示了75 MHz宽带内放大的细节。后者随后以非常高的选择性进行数字滤波(完全抑制带外内容,包括较高的本底噪声、任何带外失真以及75 MHz宽带左右两侧的带外阻塞信号),并在CTDS输出端返回之前下变频为基带。

上述系统级简化是CTDS与其他高速ADC架构之间基本架构差异的直接结果。

这种简化的额外好处是巨大的。在图1(a)中,驱动放大器的功耗可能与ADC本身相当,同时影响链路的整体噪声系数。图 1(a) 中的 AAF 不容易集成。此外,需要为每种IF(和频率规划)选择和特定信号链实现选择合适的新滤波器。经验丰富的系统设计人员知道,滤波器的实现通常非常耗时,因为由于与奈奎斯特ADC前端采样电路的非线性相互作用,具有相同滤波器功能的不同元件选择会导致线性度性能大不相同。相反,在图1(b)中,去掉了AAF滤波器,前端采样电路被CTDS的良性电阻输入取代,滤波功能由CTDS执行,其频率特性在ADI公司的技术中实现了数字编程。因此,相同的CTDS可以在多个信号链中互换使用,并以数字方式调谐到所需的频率和带宽,从而大大简化和加速整个平台开发过程。毋庸置疑,对于相同的功能和性能,图1(b)中的信号链具有比图1(a)中更低的功耗和更小的外形尺寸。

ADI公司的AD6676提供了该技术的实例,其功能框图如图3所示。后者是一个集成的IF数字化子系统,嵌入了一个具有非常高瞬时动态范围的可调谐带通CTDS,以及数字滤波和下变频功能、自动增益控制支持、集成时钟合成器和JESD204B串行输出接口。通带的中心频率(IF)可以在70 MHz和450 MHz之间进行数字调谐,其带宽可以编程为20 MHz和160 MHz之间,并具有不同的带内噪声频谱密度。

poYBAGO7wbmAKdLYAAHBqw9oxlE456.png?h=270&hash=349932DC124D426E737269CB0EAEB7E41D51A1EB&la=en&imgver=1

图3.ADI公司AD6676的功能框图。

该器件的性能如其数据手册所示,适用于各种宽带蜂窝基础设施设备和中继器、点对点微波设备、频谱分析仪、通信仪器和许多其他功能。

结论

当使用连续时间∆-Σ ADC时,可以实现重要的信号链简化和性能优化,以及更高的系统设计灵活性和减少开发工作量。这些架构的一些优势以前使它们在各种低功耗和移动应用中很常见。得益于最近多项IC技术的突破,CTDS现在还能够满足许多通信基础设施和仪器仪表系统严格的ADC高动态性能要求,同时在存在强带内和带外干扰源的情况下保持稳定运行。嵌入带通CTDS高速转换器的IF子系统具有可编程中心频率(IF)和带宽,结合数字下变频和滤波后处理后端级以及其他集成功能,为软件无线电应用提供了非常灵活和强大的解决方案。此外,它还进一步消除了主流ADC技术规定的许多额外的信号调理模块,从而降低了整体系统电平,提高了灵活性,并优化了信号链的性能。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 转换器
    +关注

    关注

    27

    文章

    8694

    浏览量

    147085
  • 滤波器
    +关注

    关注

    161

    文章

    7795

    浏览量

    177993
  • adc
    adc
    +关注

    关注

    98

    文章

    6495

    浏览量

    544466
收藏 人收藏

    评论

    相关推荐

    宽带系统中ADC前端匹配网络设计

    为了取得较好的信号带内平坦度,引入了ADC 前端匹配电路的设计,特别是对于non-input buffer的ADC在高负载抗混叠滤波器应用场景下,前端匹配电路的设计在超
    发表于 03-27 10:58 4192次阅读
    超<b class='flag-5'>宽带</b>系统中<b class='flag-5'>ADC</b><b class='flag-5'>前端</b>匹配网络设计

    高速ADC模拟输入架构类型详解

    保持(SHA)网络。图1. 开关电容ADC这种方法有两个缺点输入阻抗随着时间和模式而变化;第二是电荷注入会反射回ADC模拟输入端,可能导致滤波器建立问题。当
    发表于 10-18 11:23

    如何设计直流到宽带高速模拟信号链?

    耦合前端,该直流耦合前端一直连接到高速转换器。考虑到应用的本质,将需要开发一个有源前端设计,因为用于将信号耦合到转换器的无源前端和巴伦本身就
    发表于 08-02 06:31

    全方面的了解超宽带信号高速采集记录回放系统

    环境模拟信号的高速采集、分析、记录、存储和回放产生。超宽带信号高速采集记录存储回放系统基于高性能PCI EXPRESS及SRIO协议,实现标
    发表于 08-26 11:53

    高速ADC前端设计的挑战有哪些?

    高速ADC前端设计的挑战和权衡因素
    发表于 04-06 07:18

    请问如何实现适用于高速数据采集ADC模拟前端的运算放大器设计?

    如何实现适用于高速数据采集ADC模拟前端的运算放大器设计?
    发表于 04-20 07:16

    高速ADC模拟输入架构类型介绍

    )网络。 图1. 开关电容ADC 这种方法有两个缺点 输入阻抗随着时间和模式而变化; 第二是电荷注入会反射回ADC模拟输入端,可能导致滤波器建立问题。 当
    发表于 12-18 07:42

    高速ADC,什么是高速ADC

    高速ADC,什么是高速ADC 背景知识: 随着计算机技术、通信技术和微电子
    发表于 03-24 13:28 9983次阅读

    于连续模型的MMC环流谐振分析_董鹏

    于连续模型的MMC环流谐振分析_董鹏
    发表于 01-08 10:57 1次下载

    于连续时间宽带模拟前端,降低了高性能通信和仪表系统的功耗

    连续时间Δ-Σ(CTDS)模数转换器(ADC)是音频系统,电话手机和移动电子产品的首选架构。
    的头像 发表于 04-15 17:21 1937次阅读
    基<b class='flag-5'>于连续</b><b class='flag-5'>时间</b>的<b class='flag-5'>宽带</b><b class='flag-5'>模拟</b><b class='flag-5'>前端</b>,降低了高性能通信和仪表系统的功耗

    宽带高速记录回放系统详解

    环境模拟信号的高速采集、分析、记录、存储和回放产生。 超宽带信号高速采集记录存储回放系统基于高性能PCI EXPRESS及SRIO协议,实现
    的头像 发表于 01-13 16:30 2653次阅读
    超<b class='flag-5'>宽带</b><b class='flag-5'>高速</b>记录回放系统详解

    用于宽带通信ASIC的ADC

    由多个组件组成的模拟前端 (AFE)。其功能的核心是时间交错 ADC 和电流控制 DAC。数据转换器以 424MSps 的速度对信号进行采样,性能为 52dB MTPR(多音功率比)。
    的头像 发表于 05-05 09:51 1675次阅读
    用于<b class='flag-5'>宽带</b>通信ASIC的<b class='flag-5'>ADC</b>

    于连续时间、∆-Σ高速ADC宽带模拟前端可降低功耗

    连续时间∆-Σ (CTDS) 模数转换器 (ADC) 是音频系统、电话听筒和移动电子产品的首选架构。这种ADC架构可实现高效集成、减少信号链和低功耗等优势。当高动态范围和功率效率是主要
    发表于 02-28 15:32 450次阅读
    基<b class='flag-5'>于连续</b><b class='flag-5'>时间</b>、∆-Σ<b class='flag-5'>高速</b><b class='flag-5'>ADC</b>的<b class='flag-5'>宽带</b><b class='flag-5'>模拟</b><b class='flag-5'>前端</b>可降低功耗

    什么是模拟前端芯片技术 数字前端模拟前端的区别

    什么是模拟前端芯片技术 模拟前端芯片技术是一种涉及电子元件的
    的头像 发表于 03-15 17:58 1646次阅读

    模拟前端芯片的差异分析

    模拟前端芯片,作为电子设备中的关键组件,承担着将模拟信号转换为数字信号的重要任务。然而,由于应用场景、设计思路、工艺技术等因素的不同,市面上的模拟
    的头像 发表于 03-16 15:22 868次阅读