0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

三元锂电池的容量跳水分析研究!

锂电联盟会长 来源:锂电联盟会长 2023-01-11 11:33 次阅读

本工作中,为了研究引起三元锂离子电池发生容量跳水的原因,对三元锂离子电池进行了加速循环老化,通过分析其放电容量、放电容量−电压随循环次数变化曲线、单体电池外部形貌特征,研究其外部性能特征;使用气相色谱仪,检测电池跳水后的胀气气体构成;将大型动力电池拆解,正负极片制作成小型纽扣电池(CR2032),分析导致电池容量跳水主要内部构件;使用 X 射线衍射仪(XRD),观察电池材料物相结构特征;使用扫描电子显微镜(SEM),观察材料形貌特征。综上所有工作,探究导致三元电池容量跳水的诱因。

1 实验

1.1 单体电池样品准备

本次研究对象为某公司生产的车用方形软包电池,正极为NCM111三元材料,负极为石墨,标称容量为22Ah,其具体规格参数见表1。

1407464c-8cd6-11ed-bfe3-dac502259ad0.png

研究使用Neware公司充放电测试仪(CT-3008W-5V50ANTF)。选择容量相近,内阻一致的4块电池,分别标号1、2、3、4号,电池1~3号进行电池老化实验,4号作对比。在本研究中,上下限电压为4.15和3.00V,具体实验参数见表2。

1426e600-8cd6-11ed-bfe3-dac502259ad0.png

1.2 分析测试仪器

使用Agilent公司气相色谱仪(GC-7890B)检测气体构成。为了剖析电池容量跳水原因,将软包电池在真空手套箱中拆解,分类为正极、负极、隔膜和电池构件。将正极片和负极片分别组装成CR2032型电池做电化学测试 。材料使用Shimadzu公司电感耦合等离子体发射光谱仪(ICP-OES)做元素检测。使用Bruker公司X射线衍射仪(XRD)做物相检测,扫描角度范围5°~90°。使用FEI SEM-S4800型扫描电镜(SEM)观察材料形貌。

2 结果与讨论

2.1 单体电池的循环性能

图1是电池放电容量曲线。循环早期三块电池容量下降缓慢,但后期均出现了容量跳水现象。NCM-1号电池0~1 000次每次循环损失约5.72mAh;NCM-2号电池0~850次每次循环损失约1.42 mAh;NCM-3号电池在45℃和2C的高温高倍率条件下,容量损失最快,从开始的22.83Ah到第600次循环的19.42Ah,每次循环损失约5.68mAh。此后,电池容量急剧下降,在第680次循环后容量下降到6.98Ah,从600~680次每次循环损失155.5mAh。这说明三元锂离子电池在高温高倍率情况下,更容易出现容量跳水现象。

14382a00-8cd6-11ed-bfe3-dac502259ad0.png

图1(b~d)进一步比较了三元电池在特定工况下的放电容量-电压曲线与循环次数的关系。如图1(b),在早期循环状态下,相对容量会略有下降,这表明该过程中的电阻增加是微不足道的,并且电池老化主要是容量损失。此后,相对容量随循环次数呈指数下降。当达到非线性老化阶段时,高倍率下的放电曲线形状会发生巨大变化。例如,在图1(c)所示的常温2C放电条件下,与第600或800次循环后的放电曲线相比,在第1000次循环后的放电开始时的电压快速下降。第1050次循环后发生容量跳水。文献报道了这种电池在室温下放电的电压下冲行为,这归因于负极/隔膜界面附近出现局部孔堵塞导致内阻上升。表3对照了电池容量跳水前后的各项参数。从表3可以看出跳水后内阻均大幅上升,从而验证上述观点。

147d611a-8cd6-11ed-bfe3-dac502259ad0.png

电池出现容量跳水后,静置3~5d,三块电池均出现了不同程度胀气现象。抽出其中气体存于气体收集袋待检测。图2是NCM-4号新电池和NCM-1号跳水电池胀气前后外观对比图,电池出现容量跳水后厚度大幅增加,新电池厚度6.93mm,容量跳水后厚度11.48mm,内阻大幅上升。

14991c66-8cd6-11ed-bfe3-dac502259ad0.png

从图2(c~d)可以看出,电池胀气后发生了变形,两极耳相互靠近,极易发生短路。电池外壳由铝塑膜封装,电池容量跳水后不断产生气体,容易导致电池胀破发生危险。胀气气体主要成分及比例见表4。Lea等报道了气体的主要来源,H2主要来自微量水与电解质组分还原,CO主要来自负极SEI膜的形成以及正极晶格氧与电解质的反应,CH4主要来自碳酸乙烯酯的还原分解所致。

14bee928-8cd6-11ed-bfe3-dac502259ad0.png

2.2 正极材料引起的失效机制

2.2.1 半电池组装及电化学性能测试

将NCM-1号跳水电池和NCM-4号新电池在真空手套箱中拆解为正极极片、负极极片、隔膜和其他电池构件。图3(a)和(b)是电池容量跳水前后正极极片的对比图,宏观对比电池跳水前后差异很小。但在实际拆解过程中,新电池正极极片表面湿润光滑,有少许的电解液附着,由于电池拆解时间较长及电解液在手套箱中挥发较快,未能及时捕捉表面附着电解液的正极的照片。拆解跳水后的电池,极片表面干涸,说明此时已无液体电解液存在。

14d2862c-8cd6-11ed-bfe3-dac502259ad0.png

将新旧电池正极极片分别制作成纽扣电池,结果如图4所示。图4(a)是新电池正极极片扣电第一次充电比容量为196.61mAh/g。文献报道NCM正极电池的实际充电比容量在150~220mAh/g,说明本款车用电池正极材料性能较好且制作成的扣电性能优异。扣电循环在第二次开始稳定[见图4(b)],充电比容量新电池正极为125.81mAh/g,跳水后为40.31mAh/g,对比相差85.5mAh/g,得出容量损失率高达67.96%。相比较之下,跳水电池负极材料的容量损失率为7.24%(见下文)。这说明在单体三元电池中,正极材料发生异变,引起电池性能大幅下降。

150b6e74-8cd6-11ed-bfe3-dac502259ad0.png

图 4 正极极片比容量

2.2.2 材料物相及形貌分析

图5是NCM-4号新正极与NCM-1号容量跳水正极的XRD结果。从图中可以看出,新旧电池材料正极的特征峰主要源于材料晶体结构中的Li、Ni、Co 和 Mn的排序,未发现其他杂峰,表明电池在循环过程中没有产生其他异相。图5正极XRD图谱中的衍射峰,除了左右出现的微弱的衍射峰以外,其他衍射峰明显,显示正极材料结晶度较好。同时,从图中还可以看到两对明显的分裂峰:(006)/(012)和(018)/(110),这两对分裂峰的出现,显示正极材料层状结构良好。

153fd16e-8cd6-11ed-bfe3-dac502259ad0.png

材料晶格参数采用156be1aa-8cd6-11ed-bfe3-dac502259ad0.png公式计算,表5列出了新旧电池正极材料的晶胞参数、c/a的值、I(003)/I(104)峰强比及R因子[(I(006)+I(102))/I(101)]值强度比值。

1586e18a-8cd6-11ed-bfe3-dac502259ad0.png

晶胞参数a代表LiMO2的基本单元厚度;c代表MO层和Li2O层之间的距离,当c/a>4.899时,表明材料的层状结构优异[5]。结果显示新旧电池正极材料样品的c/a均超过了4.899,说明跳水后电池正极层状结构仍然较好。

在Li(Ni1/3Co1/3Mn1/3)O2晶格中,Li+和Ni2+的半径相近,容易发生位置互换,简称导致更高的Li+离子迁移势垒,电化学性能就会变差。I(003)/I(104)峰强比可衡量锂镍混排程度:当I(003)/I(104)>1.2,说明材料锂镍混排程度较小。结果显示,两材料的I(003)/I(104)值均超过了1.2,锂镍混排程度较低,说明锂镍混排不是导致电池发生容量跳水的原因。

R因子可以用来衡量层状材料的有序性:若材料电化学性能好,则有序性较高,对应R值较低。结果显示,跳水电池正极R值较高,材料有序性降低。Li(Ni1/3Co1/3Mn1/3)O2中Ni原子在脱锂过程中经历了有序→无序→有序(+2→+3→+4)过程,在循环后期,NCM次级微粒出现裂纹[见图6(b)],裂纹表面上大量不稳定的Ni4+物质与渗透的电解液接触会引起颗粒内部裸露表面快速降解,并增加表面层的阻抗。大量 NCM 次级微粒出现裂纹或破裂导致材料的有序性降低。

图6是正极材料SEM图像。从图6(b)可以看到大量NCM次级微粒出现裂纹,图6(d)中颗粒甚至破裂,结合 XRD 结果,颗粒出现裂纹伴随着晶粒尺寸的增大。文献报道,通常在电压3.6~4.8V之间,充电会将Ni2+/3+和 Co3+氧化至更高价态Ni3+/4+和Co4+,高价离子的自发还原容易催化电解液分解,在正极表面生成副产物和SEI膜,并且和氧反应形成含氧化合物,例如O22-,O2-,O-和O2。

1598e56a-8cd6-11ed-bfe3-dac502259ad0.png

晶体结构中的氧缺陷会降低Ni/Co/Mn和Li交换位置的能垒,从而导致晶体从层状结构向尖晶石甚至是岩盐结构转变,反应伴随着氧气和二氧化碳气体的释放。正极的氧化副产物(例如Ni/Co/Mn和Li基有机化合物)可以迁移到负极表面并在那里被还原,导致Li+的消耗和SEI膜在负极上的增厚。此外,在连续的嵌锂/脱锂过程中,氧化层和Ni/Co/Mn离子的排斥力/吸引力的变化会引起晶格参数的变化,反复的颗粒膨胀/收缩,以及颗粒内部产生的应力应变,导致NCM颗粒之间形成孔隙/孔洞及二次粒子的破裂,削弱正极中的电接触。电解液容易渗入孔隙/孔洞,腐蚀NCM材料,进一步加速发生不利的物理/化学现象。

图7是电池容量跳水NCM-1样品的能谱图,NCM三元材料微粒的破裂,结果显示O维持颗粒结构,Ni和Co主要存在于颗粒结构,少许分散于电解质,而Mn元素大量溶解分散于电解质中。对极片表面进行能谱元素分析(见图8所示),电池容量跳水后的正极表面Mn元素含量比例大幅增加,Ni、Co元素含量比例小幅增加。

15c019c8-8cd6-11ed-bfe3-dac502259ad0.png

而具有强氧化性金属离子会和电解质发生副反应,造成电解质消耗。随着 NCM 次级微粒的破裂数增加,金属离子含量增高,电解液消耗加快,当电解液消耗殆尽时,电池出现容量跳水现象。

1697fc26-8cd6-11ed-bfe3-dac502259ad0.png

2.3 负极材料引起的失效机制

图9是新电池和跳水电池在真空手套箱中拆解后的负极极片对比图。图9(a)为新电池的负极极片,拆解时表面光滑湿润,有少量电解液附着,且负极材料不易脱落。图9(b)为容量跳水电池的负极极片,拆解时极片表面干涸,无液体电解液的存在,表面分布不均匀,石墨出现颗粒粉化且容易脱落,这导致负极石墨材料压实密度降低,增大了极片厚度。结合图2,负极石墨颗粒粉化是导致单体电池厚度增加的主要原因。

16a765ee-8cd6-11ed-bfe3-dac502259ad0.png

负极扣电结果见图10。图10(a)是新电池负极极片扣电第一次放电比容量,为267.47mAh/g。扣电第二次循环稳定[见图10(b)],新电池负极放电比容量为224.84mAh/g,跳水后为208.57mAh/g,比容量相差16.27mAh/g,对比得出容量损失率为7.24%,容量损失较少。

16bae34e-8cd6-11ed-bfe3-dac502259ad0.png

图 10 负极极片制成的纽扣电池循环比容量数据

图11和表6是新电池NCM-4号与容量跳水电池NCM-1号负极极片的XRD图及数据,(002)/(101)衍射峰比较明显,证明是层状石墨结构,有利于锂离子可逆地在层间嵌入/脱出。整体峰位未偏移,表明石墨结构未坍塌。(002)峰反映了垂直于石墨片层的远程顺序,随着容量保持率的下降,(002)峰的半峰宽降低,石墨出现粉化,易于从铜箔上脱落。

16f0eca0-8cd6-11ed-bfe3-dac502259ad0.png

图12是负极材料SEM图像。在图12(a)(c)中可观察到活性石墨颗粒未被SEI完全覆盖,透过边缘处依然可见多孔的活性材料,而容量跳水后的电池可发现石墨负极颗粒被较厚的SEI膜覆盖,并且在石墨颗粒的表面出现了裂纹。随容量保持率的下降,石墨颗粒表面形貌的改变,在一定程度上展现了SEI膜的进化与改变。关于SEI膜的形成及其导致石墨负极容量衰减的机理,前人已经进行大量研究,这里不过多复述。

3 结论

本章以新能源汽车用三元电池做研究,对其进行了加速老化,结合单体电池分析手段,以及对拆解后的材料做理化分析,获得结果:

(1)三元锂离子电池在高温高倍率情况下,更容易出现容量跳水现象。

(2)跳水后的正极容量损失率高达67.96%,是导致单体电池性能衰退的主要原因。

(3)在电池循环过程中,连续的嵌锂/脱锂过程会导致三元材料NCM次级微粒的破裂,金属离子特别是Mn会溶解在电解液中,与电解液发生副反应。随着NCM次级微粒的破裂数增加,金属离子含量增高,电解液消耗加快,当电解液消耗殆尽时,电池出现容量跳水现象。

(4)单体电池在发生容量跳水后容易出现胀气现象,主要有H2、CO、CH4等。

总体来看,目前关于三元锂离子电池的容量跳水机理研究仍然较少,本文工作仍有许多不足。未来随着三元锂离子动力电池装机总量的爆发,这一领域潜在的巨大研究价值,势必会引起更多学者关注。期待着未来更多新工艺技术应用到三元锂离子电池中,提升电池性能、保障电池安全是每个研究学者不懈追求的目标。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3200

    浏览量

    77458
  • 锂电池
    +关注

    关注

    259

    文章

    7981

    浏览量

    169001
  • 容量
    +关注

    关注

    0

    文章

    115

    浏览量

    21196
  • 电池
    +关注

    关注

    84

    文章

    10386

    浏览量

    128506
  • 三元锂电池
    +关注

    关注

    8

    文章

    172

    浏览量

    15560

原文标题:三元锂电池的容量跳水分析研究!

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    新能源客车三元解禁,锂电池包将遇到哪些问题和机会

    新能源客车三元解禁,锂电池包将遇到哪些问题和机会?现在的社会,到处都是提倡环保节能绿色,无污染的环境,导致很多产业都在逐步走向绿色节能化才能适应社会发展需求。随着新能源汽车推广数量增加,在国家
    发表于 08-20 09:28

    回收电池,回收动力电池,回收动力锂电池,回收三元动力电池,回收锂电池 锂电池回收 锂电池模组回收

    我们将为贵司提供热情周到的,咨询、报价! 电话:***彭'SQQ QQ752127311回收电芯,回收库存电芯,回收聚合物电芯,回收锂电芯,回收动力电芯,三元电芯回收电池,回收动力电池
    发表于 08-31 21:43

    回收电池,回收动力电池,回收动力锂电池,回收三元动力电池,回收锂电池回收锂电芯,回收动力电芯,三元电芯

    锂电池,回收三元动力电池,回收锂电池锂电池回收 锂电池模组回收软包
    发表于 09-23 11:48

    回收动力电芯,三元电芯,回收动力锂电池,回收三元动力电池,回收锂电池,圆柱锂电池回收 动力锂电池回收

    锂电池,回收三元动力电池,回收锂电池锂电池回收 锂电池模组回收软包
    发表于 01-04 14:06

    回收电池,回收动力电池,回收动力锂电池,回收三元动力电池,回收锂电池,回收18650电池

    我们将为贵司提供热情周到的,咨询、报价! 电话:***彭'SQQ QQ752127311回收电芯,回收库存电芯,回收聚合物电芯,回收锂电芯,回收动力电芯,三元电芯回收电池,回收动力电池
    发表于 01-17 09:50

    三元锂电池优缺点

    本文首先介绍了三元锂电池的概念,其次介绍了三元锂电池优点,最后阐述了三元锂电池的缺点。
    的头像 发表于 08-24 17:17 2.7w次阅读

    三元锂电池真实寿命_三元锂电池的应用

    本文首先介绍了三元锂电池真实寿命,其次阐述了影响三元锂电池使用寿命因素,最后介绍了影响三元锂电池
    发表于 03-28 11:29 1.9w次阅读

    三元锂电池三元指的是什么_三元锂电池的前景

    三元材料作为正极材料的动力锂电池近年来凭借其容量高、循环稳定性(电池寿命)好、成本适中等优点,逐渐替代了镍氢电池、钴酸
    发表于 03-28 11:42 1.9w次阅读

    三元锂电池的材料_三元锂电池到底安全吗

    本文详细阐述了三元锂电池的材料及三元锂电池的安全性。
    发表于 03-28 11:49 1.3w次阅读

    影响三元锂电池使用年限的原因有哪些

    锂电池是生活中常见的电池类型之一,但就锂电池而言,它又具备诸多细分类别,如三元锂电池。为增进大家对锂电池
    的头像 发表于 01-17 10:34 6021次阅读

    三元锂电池的优缺点分析

    、能力密度更高、耐低温的特点,目前正广泛应用于新能源汽车上。 三元聚合物锂电池优点:     单位电能较大 三元锂电池能量密度高,可超过200WH/Kg 电压平台高,比
    的头像 发表于 10-05 14:45 1.1w次阅读

    三元锂电池的分类及应用

    三元锂电池,是指使用镍钴锰酸锂或镍钴铝酸锂三元正极材料制成的一种锂电池三元材料分别指镍、钴和锰。一些
    的头像 发表于 07-04 09:23 2900次阅读

    钴酸锂电池三元锂电池对比 钴酸锂电池三元锂电池哪个好?

    的优缺点,并根据特定的应用需求作出选择。下面将详细比较钴酸锂电池三元锂电池的各方面性能和应用特点。 1. 结构及成本 钴酸锂电池的正极材料是钴酸锂,负极材料是石墨,电解液是有机溶剂,
    的头像 发表于 11-21 16:05 6581次阅读

    三元锂电池参数 三元锂电池最佳工作温度 三元锂电池寿命一般是几年?

    三元锂电池参数 三元锂电池最佳工作温度 三元锂电池寿命一般是几年?
    的头像 发表于 11-21 16:05 1.5w次阅读

    三元锂电池使用寿命分析

    随着全球能源结构的转型和新能源汽车的快速发展,电池技术成为推动这一变革的关键因素。三元锂电池因其高能量密度、良好的循环稳定性和较低的成本而受到青睐。 一、三元
    的头像 发表于 10-31 09:39 150次阅读