0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiamFC:用于目标跟踪的全卷积孪生网络 fully-convolutional siamese networks for object tracking

jf_96884364 来源:代码的路 作者:代码的路 2023-01-11 17:35 次阅读

原文链接

SiamFC网络

<

图中z代表的是模板图像,算法中使用的是第一帧的ground truth;x代表的是search region,代表在后面的待跟踪帧中的候选框搜索区域;ϕ代表的是一种特征映射操作,将原始图像映射到特定的特征空间,文中采用的是CNN中的卷积层和pooling层;6×6×128代表z经过ϕ后得到的特征,是一个128通道6×6大小feature,同理,22×22×128是x经过ϕ后的特征;后面的×代表卷积操作,让22×22×128的feature被6×6×128的卷积核卷积,得到一个17×17的score map,代表着搜索区域中各个位置与模板相似度值。

算法本身是比较搜索区域与目标模板的相似度,最后得到搜索区域的score map。其实从原理上来说,这种方法和相关性滤波的方法很相似。其在搜索区域中逐点的目标模板进行匹配,将这种逐点平移匹配计算相似度的方法看成是一种卷积,然后在卷积结果中找到相似度值最大的点,作为新的目标的中心

上图所画的ϕ其实是CNN中的一部分,并且两个ϕ的网络结构是一样的,这是一种典型的孪生神经网络,并且在整个模型中只有conv层和pooling层,因此这也是一种典型的全卷积(fully-convolutional)神经网络。

在训练模型的时肯定需要损失函数,并通过最小化损失函数来获取最优模型。本文算法为了构造有效的损失函数,对搜索区域的位置点进行了正负样本的区分,即目标一定范围内的点作为正样本,这个范围外的点作为负样本,例如图1中最右侧生成的score map中,红色点即正样本,蓝色点为负样本,他们都对应于search region中的红色矩形区域和蓝色矩形区域。文章采用的是logistic loss,具体的损失函数形式如下:

对于score map中了每个点的损失:

l(y,x)=log(1+exp(-xy))

其中v是score map中每个点真实值,y∈{+1,−1}是这个点所对应的标签

上面的是score map中每个点的loss值,而对于score map整体的loss,则采用的是全部点的loss的均值。即:

L(y,v)=\\frac{1}{|D|}\\displaystyle \\sum_{u\\in D}l(y[u],v[u])

这里的u∈D代表score map中的位置。

整个网络结构类似与AlexNet,但是没有最后的全连接层,只有前面的卷积层和pooling层。

整个网络结构如上表,其中pooling层采用的是max-pooling,每个卷积层后面都有一个ReLU非线性激活层,但是第五层没有。另外,在训练的时候,每个ReLU层前都使用了batch normalization(批规范化是深度学习中经常见到的一种训练方法,指在采用梯度下降法训练DNN时,对网络层中每个mini-batch的数据进行归一化,使其均值变为0,方差变为1,其主要作用是缓解DNN训练中的梯度消失/爆炸现象,加快模型的训练速度),用于降低过拟合的风险。

AlexNet

AlexNet为8层结构,其中前5层为卷积层,后面3层为全连接层;学习参数有6千万个,神经元有650,000个。AlexNet在两个GPU上运行;AlexNet在第2,4,5层均是前一层自己GPU内连接,第3层是与前面两层全连接,全连接是2个GPU全连接;

RPN层第1,2个卷积层后;Max pooling层在RPN层以及第5个卷积层后。ReLU在每个卷积层以及全连接层后。

卷积核大小数量:

  • conv1:96 11×11×3(个数/长/宽/深度)
  • conv2:256 5×5×48
  • conv3:384 3×3×256
  • conv4: 384 3×3×192
  • conv5: 256 3×3×192

ReLU、双GPU运算:提高训练速度。(应用于所有卷积层和全连接层)

重叠pool池化层:提高精度,不容易产生过度拟合。(应用在第一层,第二层,第五层后面)

局部响应归一化层(LRN):提高精度。(应用在第一层和第二层后面)

Dropout:减少过度拟合。(应用在前两个全连接层)

微调(fine-tune)

看到别人一个很好的模型,虽然针对的具体问题不一样,但是也想试试看,看能不能得到很好的效果,而且自己的数据也不多,怎么办?没关系,把别人现成的训练好了的模型拿过来,换成自己的数据,调整一下参数,再训练一遍,这就是微调(fine-tune)。

冻结预训练模型的部分卷积层(通常是靠近输入的多数卷积层),训练剩下的卷积层(通常是靠近输出的部分卷积层)和全连接层。从某意义上来说,微调应该是迁移学习中的一部分。

感知机:PLA

多层感知机是由感知机推广而来,感知机学习算法(PLA: Perceptron Learning Algorithm)用神经元的结构进行描述的话就是一个单独的。

感知机的神经网络表示如下:

多层感知机:MLP

多层感知机的一个重要特点就是多层,我们将第一层称之为输入层,最后一层称之为输出层,中间的层称之为隐层。MLP并没有规定隐层的数量,因此可以根据各自的需求选择合适的隐层层数。且对于输出层神经元的个数也没有限制。

MLP神经网络结构模型如下,本文中只涉及了一个隐层,输入只有三个变量[x1,x2,x3]和一个偏置量b,输出层有三个神经元。相比于感知机算法中的神经元模型对其进行了集成。

ReLU函数

ReLU函数公式如下:

RELU(x)= \\begin{cases} x, & \\text {if x>0} \\ 0, & \\text{if x<0} \\end{cases}

图像如下:

sigmod函数

sigmod 函数在趋于正无穷或负无穷时,函数趋近平滑状态。因为输出范围(0,1),所以二分类的概率常常用这个函数。

sigmoid函数表达式如下 :

f(x)=\\frac{1}{(1-e^{-z})}

图像如下:

学习更多编程知识,请关注我的公众号:

[代码的路]

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 图像处理
    +关注

    关注

    27

    文章

    1280

    浏览量

    56627
  • 函数
    +关注

    关注

    3

    文章

    4303

    浏览量

    62411
  • PLA
    PLA
    +关注

    关注

    0

    文章

    38

    浏览量

    17028
  • 全卷积网络
    +关注

    关注

    0

    文章

    7

    浏览量

    2016
  • MLP
    MLP
    +关注

    关注

    0

    文章

    57

    浏览量

    4226
收藏 人收藏

    评论

    相关推荐

    计算机视觉必读:区分目标跟踪网络压缩、图像分类、人脸识别

    的训练数据集通常和要用于检索的数据集比较相似。此外,可以用候选区域网络提取图像中可能包含目标的前景区域。孪生网络(
    发表于 06-08 08:00

    Large-Scale_FPGA-based_Convolutional_Networks

    Large-Scale FPGA-based Convolutional Networks
    发表于 03-24 17:00 0次下载

    卷积网络FCN进行图像分割

    Networks for Semantic Segmentation》在图像语义分割挖了一个坑,于是无穷无尽的人往坑里面跳。 卷积网络 Full
    发表于 09-26 17:22 612次阅读

    基于信息熵的级联Siamese网络目标跟踪方法

    目标跟踪是计算机视觉领域的一个重要研究方向,针对目前算法对于目标外观变化的鲁棒性较差等问题,提出了一种基于信息熵的级联 Siamese网络
    发表于 05-07 14:11 1次下载

    SiamRPN:High Performance Visual Tracking with Siamese Region Proposal Network 孪生网络

    /Li_High_Performance_Visual_CVPR_2018_paper.pdf 摘要 大多数性能优越的视觉目标跟踪器很难有实时速度。在这篇文章中,我们提出了孪生候选区域生成网络
    的头像 发表于 01-11 17:41 1056次阅读
    SiamRPN:High Performance Visual <b class='flag-5'>Tracking</b> with <b class='flag-5'>Siamese</b> Region Proposal Network <b class='flag-5'>孪生</b><b class='flag-5'>网络</b>

    SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 深层网络连体视觉跟踪的演变

    /SiamRPN_plus_plus_PyTorch 摘要 基于孪生网络跟踪器将跟踪表述为目标模板和搜索区域之间的
    的头像 发表于 01-11 17:52 1092次阅读
    SiamRPN++: Evolution of <b class='flag-5'>Siamese</b> Visual <b class='flag-5'>Tracking</b> with Very Deep <b class='flag-5'>Networks</b>  深层<b class='flag-5'>网络</b>连体视觉<b class='flag-5'>跟踪</b>的演变

    SA-Siam:用于实时目标跟踪孪生网络A Twofold Siamese Network for Real-Time Object Tracking

    目标跟踪任务,因此本文方法可以简单概括为:SA-Siam=语义分支+外观分支; 2.Motivation:目标跟踪的特点是,我们想从众多背景中区分出变化的
    的头像 发表于 01-11 17:54 989次阅读
    SA-Siam:<b class='flag-5'>用于</b>实时<b class='flag-5'>目标</b><b class='flag-5'>跟踪</b>的<b class='flag-5'>孪生</b><b class='flag-5'>网络</b>A Twofold <b class='flag-5'>Siamese</b> Network for Real-Time <b class='flag-5'>Object</b> <b class='flag-5'>Tracking</b>

    DW-Siam:Deeper and Wider Siamese Networks for Real-Time Visual Tracking 更宽更深的孪生网络

    原文链接 论文地址:https://arxiv.org/pdf/1901.01660.pdf 摘要 目前在孪生网络追踪器中使用的主干网络相对较浅,例AlexNet。本文研究如何利用更深和更广的
    的头像 发表于 01-12 09:24 803次阅读
    DW-Siam:Deeper and Wider <b class='flag-5'>Siamese</b> <b class='flag-5'>Networks</b> for Real-Time Visual <b class='flag-5'>Tracking</b> 更宽更深的<b class='flag-5'>孪生</b><b class='flag-5'>网络</b>

    卷积神经网络详解 卷积神经网络包括哪几层及各层功能

    卷积神经网络详解 卷积神经网络包括哪几层及各层功能 卷积神经网络(
    的头像 发表于 08-21 16:41 5845次阅读

    卷积神经网络的基本原理 卷积神经网络发展 卷积神经网络三大特点

    卷积神经网络的基本原理 卷积神经网络发展历程 卷积神经网络三大特点 
    的头像 发表于 08-21 16:49 2301次阅读

    卷积神经网络算法代码matlab

    )、池化层(Pooling Layer)和连接层(Fully Connected Layer)。卷积神经网络源自对脑神经细胞的研究,能够有效地处理大规模的视觉和语音数据。本文将详细介
    的头像 发表于 08-21 16:50 1173次阅读

    卷积神经网络可以通过输出反推到输入吗

    卷积神经网络Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然
    的头像 发表于 07-03 09:17 521次阅读

    卷积神经网络的组成部分有哪些

    卷积神经网络Convolutional Neural Networks, CNNs)是一种深度学习模型,广泛应用于图像识别、视频分析、自然
    的头像 发表于 07-03 09:31 670次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、
    的头像 发表于 07-03 09:40 392次阅读

    卷积神经网络的基本原理与算法

    卷积神经网络Convolutional Neural Networks,CNN)是一类包含卷积计算且具有深度结构的前馈神经
    的头像 发表于 11-15 14:47 226次阅读