电子发烧友网报道(文/李宁远)不管是消费电子、工业自动化还是汽车应用里,在监测设备的运行状况、健康状态的时候,都需要根据设备运行场景选择合适的传感器,以确保传感器能够准确地获取设备信息,并进行检测、诊断甚至预测故障。
振动检测是一种实用的测量方式,检测到的振动数据是用于诊断故障的关键预测变量。加速度计则是用于振动检测的常用传感器,广泛应用于消费电子、工业自动化以及汽车传感等领域,它能够为单一设备或者整个系统收集状态信息,进而提供传感数据方便系统对设备或系统做出状态预测。
振动检测中的电容式与压电式加速度计
考量合适的加速度计一般有两大类选择,电容式和压电式。热感式的加速度计也有,但是在我们熟悉的实际应用中应用较少,这里就不单独列出。
电容式加速度计是基于电容极距变化的原理,在振动中电容极距发生变化,进而电容值变化,以此来衡量加速度值。在实际的应用中,为了捕捉这种有时候很微小的信号,会采用一堆电容阵列来放大信号。
压电式加速度计的工作原理是压电效应,压电效应是一种施加应力能产生电荷,施加电场能产生尺寸上变形的效应。本质上是一种机械能与电能交互作用的现象。用在传感器上的压电效应是正压电效应,即将机械能转为电能,电压值与加速度大小成正比。
在传感器的飞速发展下,MEMS加速度计成为了大家的首选,从目前市场上的产品来看,MEMS加速度计基本上走的都是电容式路线。这是因为压电式MEMS加速度计内部有刚体支撑的存在,通常情况下只能感应到动态加速度,而不能感应到静态加速度,应用上有限制。电容式MEMS加速度计既能感应动态加速度也能感应静态加速度。
不过从加速度计的发展历史来看,压电加速度计的应用更广泛,因为它具有良好的线性度、出色的动态范围、高温操作特性和高达数百kHz的高带宽这些优点。如果追求极致性能,压电式的带宽和噪声性能肯定是更好一些的,但也贵了不少。在电容式或者电容式MEMS加速度计不满足性能要求的特殊情况下,压电路线是很好的选择。
而电容式加速度计在MEMS的加持下,在小尺寸、低功耗和更快的频率响应上也是越走越好。在MEMS的加持下,器件不仅能提供直流响应,在ADC、调谐滤波的加持下还能实现自检,在振动检测里备受关注。
这里根据两种技术路线的特点,做了一个对比,如下:
振动检测中的传感器选择
从上面表格中我们可以很明显地看出来,电容式/电容式MEMS加速度计因为带宽较低,更适用于低频振动的测量,如手机、PC等移动设备,压电式加速度计能达到极致的高带宽,更适用于高频振动的测量。
消费电子我们以具有代表性的可穿戴设备为例,可穿戴设备在选择振动检测的加速度计时,看重的是低功耗、小尺寸以及可以增强节能性能的集成特性。低功耗永远是可穿戴设备核心的一项指标,尺寸和集成性也是可穿戴设备里的硬指标。
这种要求就限定了振动检测只能选择电容式MEMS加速度计去检测运动以及静态加速度。这类应用对带宽的要求并不高,十几kHz到几十kHz即可,对g值的要求范围通常在1g左右。电容式MEMS加速度计很适合这种应用,需要注意的点在于器件带宽和采样速率可能在低功耗下降至无法测量可用加速度数据的水平。
工业领域这种振动传感随处可见,这里以电机检测为例。振动传感在电机检测上一般能用于检测以下几个故障,轴承状态、齿轮啮合、泵气蚀、电机未对准、电机未平衡以及电机负载条件。对于不平衡、未对准这一类故障,对传感器件的噪声性能要求并不算严格,对带宽的要求也仅需达到5×至10×基频即可,更多要求的是传感器能对多轴进行同时检测;轴承缺陷和齿轮缺陷这类故障则对噪声和带宽要求极高,噪声范围必须要控制在<100 µg/√Hz,同时带宽要求>5kHz。此时电容式和压电式的选择就很微妙了,如果场景的动态范围不是很高,带宽要求也不是高的情况下,可以选择电容式加速度计的时候都不会去选压电式。
(MEMS加速度计,BOSCH )
在现在的减少布线,降低功耗的工业无线传感网络趋势下这也是很常见的一种选择,但前提是场景条件有利可以接受低一点的精度数据,在需要高动态范围、宽带宽或极端温度的应用情况下,毫无疑问是要使用压电式加速度计。压电式加速度计的使用需要注意最大程度降低对外部噪声和串扰的敏感度。
全球加速度计传感器发展
根据QYResearch整理的数据,2016至2020年,全球加速度计市场规模以2.28%的年复合增长率到达了20.57亿美元,2021年全球市场规模预计在21.62亿美元,到2027年将达到27.98亿美元。
中国市场的规模增长也很快,预计将由2020年的3.78亿美元增长到2027年的5.79亿美元,这些增长里同样是电容式MEMS加速度计占据了绝大多数份额,MEMS电容加速度计更小的尺寸和更高的集成性无疑是更契合现在各行各业传感器发展趋势的。集成特性不够会导致加速度计在传感器设备集群里很别扭。
绝大部分MEMS加速度计都是集成ADC的,不过有些不带ADC也会在带宽上性能做得更高,然后通过外部ADC来保证性能,不管哪种方式都可以和传感器系统无缝集成。功耗自不必多说,目前电容式MEMS加速度计把功耗控制在µA,甚至nA范围都是有的。
小结
在振动检测应用里,传感器也开始与机器学习结合,利用基于来自加速度计的数据创建代表性的机器模型进行机器学习,进而实现更高级的检测异常功能。在目前汽车智能化、工业自动化以及消费电子普及化的大趋势下,MEMS加速度计正在往更高的检测精度、更低的功耗、更高的集成性以及实现更智能的检测功能上突破。
振动检测是一种实用的测量方式,检测到的振动数据是用于诊断故障的关键预测变量。加速度计则是用于振动检测的常用传感器,广泛应用于消费电子、工业自动化以及汽车传感等领域,它能够为单一设备或者整个系统收集状态信息,进而提供传感数据方便系统对设备或系统做出状态预测。
振动检测中的电容式与压电式加速度计
考量合适的加速度计一般有两大类选择,电容式和压电式。热感式的加速度计也有,但是在我们熟悉的实际应用中应用较少,这里就不单独列出。
电容式加速度计是基于电容极距变化的原理,在振动中电容极距发生变化,进而电容值变化,以此来衡量加速度值。在实际的应用中,为了捕捉这种有时候很微小的信号,会采用一堆电容阵列来放大信号。
压电式加速度计的工作原理是压电效应,压电效应是一种施加应力能产生电荷,施加电场能产生尺寸上变形的效应。本质上是一种机械能与电能交互作用的现象。用在传感器上的压电效应是正压电效应,即将机械能转为电能,电压值与加速度大小成正比。
在传感器的飞速发展下,MEMS加速度计成为了大家的首选,从目前市场上的产品来看,MEMS加速度计基本上走的都是电容式路线。这是因为压电式MEMS加速度计内部有刚体支撑的存在,通常情况下只能感应到动态加速度,而不能感应到静态加速度,应用上有限制。电容式MEMS加速度计既能感应动态加速度也能感应静态加速度。
不过从加速度计的发展历史来看,压电加速度计的应用更广泛,因为它具有良好的线性度、出色的动态范围、高温操作特性和高达数百kHz的高带宽这些优点。如果追求极致性能,压电式的带宽和噪声性能肯定是更好一些的,但也贵了不少。在电容式或者电容式MEMS加速度计不满足性能要求的特殊情况下,压电路线是很好的选择。
而电容式加速度计在MEMS的加持下,在小尺寸、低功耗和更快的频率响应上也是越走越好。在MEMS的加持下,器件不仅能提供直流响应,在ADC、调谐滤波的加持下还能实现自检,在振动检测里备受关注。
这里根据两种技术路线的特点,做了一个对比,如下:
传感类型 | 带宽 | 噪声 | 直流响应 |
压电式加速度计 | 高 | 1 µg/√Hz-50 µg/√Hz | 无 |
电容/MEMES电容加速度计 | 低 | 25µg/√Hz-100 µg/√Hz | 有 |
振动检测中的传感器选择
从上面表格中我们可以很明显地看出来,电容式/电容式MEMS加速度计因为带宽较低,更适用于低频振动的测量,如手机、PC等移动设备,压电式加速度计能达到极致的高带宽,更适用于高频振动的测量。
消费电子我们以具有代表性的可穿戴设备为例,可穿戴设备在选择振动检测的加速度计时,看重的是低功耗、小尺寸以及可以增强节能性能的集成特性。低功耗永远是可穿戴设备核心的一项指标,尺寸和集成性也是可穿戴设备里的硬指标。
这种要求就限定了振动检测只能选择电容式MEMS加速度计去检测运动以及静态加速度。这类应用对带宽的要求并不高,十几kHz到几十kHz即可,对g值的要求范围通常在1g左右。电容式MEMS加速度计很适合这种应用,需要注意的点在于器件带宽和采样速率可能在低功耗下降至无法测量可用加速度数据的水平。
工业领域这种振动传感随处可见,这里以电机检测为例。振动传感在电机检测上一般能用于检测以下几个故障,轴承状态、齿轮啮合、泵气蚀、电机未对准、电机未平衡以及电机负载条件。对于不平衡、未对准这一类故障,对传感器件的噪声性能要求并不算严格,对带宽的要求也仅需达到5×至10×基频即可,更多要求的是传感器能对多轴进行同时检测;轴承缺陷和齿轮缺陷这类故障则对噪声和带宽要求极高,噪声范围必须要控制在<100 µg/√Hz,同时带宽要求>5kHz。此时电容式和压电式的选择就很微妙了,如果场景的动态范围不是很高,带宽要求也不是高的情况下,可以选择电容式加速度计的时候都不会去选压电式。
(MEMS加速度计,BOSCH )
在现在的减少布线,降低功耗的工业无线传感网络趋势下这也是很常见的一种选择,但前提是场景条件有利可以接受低一点的精度数据,在需要高动态范围、宽带宽或极端温度的应用情况下,毫无疑问是要使用压电式加速度计。压电式加速度计的使用需要注意最大程度降低对外部噪声和串扰的敏感度。
全球加速度计传感器发展
根据QYResearch整理的数据,2016至2020年,全球加速度计市场规模以2.28%的年复合增长率到达了20.57亿美元,2021年全球市场规模预计在21.62亿美元,到2027年将达到27.98亿美元。
中国市场的规模增长也很快,预计将由2020年的3.78亿美元增长到2027年的5.79亿美元,这些增长里同样是电容式MEMS加速度计占据了绝大多数份额,MEMS电容加速度计更小的尺寸和更高的集成性无疑是更契合现在各行各业传感器发展趋势的。集成特性不够会导致加速度计在传感器设备集群里很别扭。
绝大部分MEMS加速度计都是集成ADC的,不过有些不带ADC也会在带宽上性能做得更高,然后通过外部ADC来保证性能,不管哪种方式都可以和传感器系统无缝集成。功耗自不必多说,目前电容式MEMS加速度计把功耗控制在µA,甚至nA范围都是有的。
小结
在振动检测应用里,传感器也开始与机器学习结合,利用基于来自加速度计的数据创建代表性的机器模型进行机器学习,进而实现更高级的检测异常功能。在目前汽车智能化、工业自动化以及消费电子普及化的大趋势下,MEMS加速度计正在往更高的检测精度、更低的功耗、更高的集成性以及实现更智能的检测功能上突破。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
加速度计
+关注
关注
6文章
702浏览量
45897 -
振动检测
+关注
关注
0文章
6浏览量
6494
发布评论请先 登录
相关推荐
MEMS加速度计的工作原理是什么
MEMS加速度计的工作原理主要基于牛顿第二定律,即力等于质量乘以加速度。以下是对其工作原理的介绍: 一、核心部件与结构 MEMS加速度计的核心部件包括一个微小的质量块、弹性元件(如弹簧梁)以及
PCB Piezotronics推出357A67型三轴电荷输出加速度计
据麦姆斯咨询报道,近期,PCB Piezotronics推出了357A67型三轴电荷输出加速度计,以满足高温应用需求。这款新型号是PCB Piezotronics目前最小的三轴电荷输出加速度计,可
三轴加速度计LIS2DUX12开发(2)----静态校准
零偏是影响加速度计输出精度的重要指标之一,零偏可分为静态零偏和动态零偏 。静态零偏也称为固定零偏,通常经标定与补偿减小静态零偏。动态零偏是由于加速度计自身的缺陷或环境因素(如温度、振动、电子干扰等
e2studio开发三轴加速度计LIS2DW12(4)----测量倾斜度
本文将介绍如何驱动和利用LIS2DW12三轴加速度计的倾斜检测理论和倾斜角测量方法。一般来说,这里描述的程序也可以应用于三轴模拟或数字加速度计,这取决于它们各自的规格。
三轴加速度计LIS2DW12开发(4)----测量倾斜度
本文将介绍如何驱动和利用LIS2DW12三轴加速度计的倾斜检测理论和倾斜角测量方法。一般来说,这里描述的程序也可以应用于三轴模拟或数字加速度计,这取决于它们各自的规格。
备受青睐的MEMS加速度计,更小尺寸、更低功耗、更智能
,进而提供传感数据方便系统对设备或系统做出状态评估。 现在消费电子行业朝着更时尚、更简约的设计方向发展,工业领域也对加速度计提出了更小尺寸更高集成性的需求,很多应用领域对微型加速度计
Kistler推出了8740A和8788A系列加速度计
据麦姆斯咨询报道,近期,Kistler推出了8740A和8788A系列加速度计,可用于航空航天领域的振动测量。
请问要如何设置才会让加速度计LIS3DH轻微振动不触发中断,但是翻转一定角度触发中断?
我使用加速度计LIS3DH监控设备角度的异常改变,但在应用中发现轻微振动和角度翻转都会触发中断,唤醒MCU,无法实现低功耗。请问要如何设置才会让加速度计LIS3DH轻微振动不触发中断,
发表于 03-22 07:03
求助,关于LIS2HH12TR读加速度计的疑问求解
大家好:
我在使用LIS2HH12: 3 轴“pico”加速度计时遇到了 读数不准的问题,请大家看一下。
首先我的应用场景:安装在设备上,FPGA通过IIC时刻读出当前的位置,不会有突发的振动
发表于 03-18 07:08
ADXL1001加速度计没有输出的原因?
近期在使用ADXL1001加速度计时出现问题,具体表现为供电电压为5V时加速度计没有输出电压,所以我们无法判断是加速度计本身有问题,还是我们电路设计有问题,电路原理图如图所示,电源为15V,经
发表于 12-29 07:05
两轴加速度计和三轴加速度计的使用区别?
有个问题请教一下:在静态测量的情况下,两轴的加速度计在测得X、Y轴上的加速度后,是不是就可以根据这两个值和重力加速度g算出Z轴方向的加速度,这样的话XYZ三个方向的角度也可以推导出来。
发表于 12-29 06:06
评论