0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅功率器件的发展现状及其在电力系统中的应用展望

国晶微第三代半导体碳化硅SiC 来源:国晶微第三代半导体碳化 2023-01-31 09:45 次阅读

碳化硅作为一种宽禁带材料,具有高击穿场强、高饱和电子漂移速率、高热导率等优点,可以实现高压、大功率、高频、高温应用的新型功率半导体器件。该文对碳化硅功率半导体器件的最新发展进行回顾,包括碳化硅功率二极管MOSFETIGBT,并对其在电力系统的应用现状与前景进行展望。

1引言

理想的半导体功率器件,应当具有这样的静态和动态特性:在阻断状态,能承受高电压;在导通状态,具有高的电流密度和低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的di/d t和du/d t,具有低的开关损耗,并具有全控功能。半个多世纪以来(自20世纪50年代硅晶闸管的问世),半导体功率器件的研究工作者为实现上述理想的器件做出了不懈的努力,并已取得了世人瞩目的成就。各类硅基功率半导体器件(功率二极管、VDMOS、IGBT、IGCT等)被成功制造和应用,促使各种新型大功率装置成功地应用于各种工业电源电机驱动、电力牵引、电能质量控制、可再生能源发电、分布式发电、国防和前沿科学技术等领域。

然而由于在电压、功率耐量等方面的限制,这些硅基大功率器件在现代高性能电力电子装置中(要求具有变流、变频和调相能力;快速的响应性能~ms;利用极小的功率控制极大功率;变流器体积小、重量轻等)不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加,制约了现代电力系统的进一步发展。

近年来,作为新型的宽禁带半导体材料——碳化硅(SiC),因其出色的物理及电特性,正越来越受到产业界的广泛关注。碳化硅功率器件的重要优势在于具有高压(达数万伏)、高温(大于500℃)特性,突破了硅基功率器件电压(数kV)和温度(小于150℃)限制所导致的严重系统局限性。随着碳化硅材料技术的进步,各种碳化硅功率器件被研发出来,如碳化硅功率二极管、MOSFET、IGBT等,由于受成本、产量以及可靠性的影响,碳化硅功率器件率先在低压领域实现了产业化,目前的商业产品电压等级在600~1700V。近两年来,随着技术的进步,高压碳化硅器件已经问世,如19.5kV的碳化硅二极管,10kV的碳化硅MOSFET[2]和13~15kV[3-4]碳化硅IGBT等,并持续在替代传统硅基功率器件的道路上取得进步。这些碳化硅功率器件的成功研发带来了半导体功率器件性能的飞跃提升,引发了新一轮技术革命,必将在众多应用领域,如电力系统中的高压领域产生深远的影响。

5f74ae9c-8d00-11ed-bfe3-dac502259ad0.jpg

碳化硅材料及功率器件进展

2.1碳化硅材料

在体单晶材料方面,SiC单晶衬底已经商品化。目前国际上已有76.2 mm和101.6 mm的SiC抛光衬底材料出售,具有批量生产能力的公司超过十家。高功率SiC器件的芯片面积很大(单胞面积>1cm),需要大尺寸和低缺陷的衬底材料,尤其需要很低的微管缺陷密度。在这种需要的激励之下并经过长期的技术积累,困扰SiC单晶生长的微管缺陷控制技术也在2004年获得突破。如日本Toyata公司采用“重复a面”(repeated a-face:RAF)生长技术,实现了50.8mm SiC单晶的无微管生长,同时也将位错密度降低到250/cm2以下。2005年美国Intrinsic公司也获得了零微管(Zero Micropipe,简称ZMP)的SiC单晶技术,并于2006年生长出无微管的76.2 mm SiC衬底材料。在并购了Intrinsic公司获得零微管技术后,Cree公司直径101.6 mm的4H-SiC导通衬底的微管密度最低达0.1/cm2,甚至零微管,使得用于制作面积为1cm2的功率器件能够实现90%以上的器件成品率。外延材料方面,SiC外延生长设备的规模也不断增大,能够同时生长多片大尺寸的SiC外延。例如瑞典Epigress公司的VP2800HW型热壁式SiC外延生长系统能够同时生长10片101.6 mm高质量SiC外延,为了把SiC功率器件抵抗电压提高到10kV,SiC外延的厚度要达到100μm。在SiC外延研究中,一个重要指标是外延层少子寿命。少子寿命不仅反映了深能级密度和材料缺陷密度等重要外延参数,而且直接决定了高功率SiC器件的通流能力。据理论研究,20kV SiC器件中少子寿命应在10s以上,否则通流能力很弱。

目前日本NEDO公司利用垂直型外延炉实现了高质量的厚达28μm的外延,在50.8 mm上取得了少子寿命分布图,其平均值为1s。SiC外延技术研究的另一个重要问题是4°偏轴4H-SiC衬底上的高质量外延生长。4°偏轴衬底凭借其成本优势逐渐成为大尺寸4H-SiC的主流,但与8°偏轴相比小角度偏轴衬底上外延生长的难度较高,台阶聚并(step-bunching)现象严重,导致出现表面形貌差、缺陷密度高以及外延材料均匀性不好等问题。美国Cree公司通过改进生长条件和生长步骤获得了101.6 mm 4°偏轴4H-SiC衬底上理想的外延生长工艺,缺陷密度只有2/cm2。这些外延材料参数可满足SiC器件研究和批量生产的要求。

2.2碳化硅功率二极管

碳化硅功率二极管有3种类型:肖特基二极管(Schottky barrier diode,SBD)、PIN二极管和结势垒控制肖特基二极管(junction barrier Schottky,JBS)。在5kV阻断电压以下的范围,碳化硅结势垒肖特基二极管是较好的选择。JBS二极管结合了肖特基二极管所拥有的出色的开关特性和PIN结二极管所拥有的低漏电流的特点。把JBS二极管结构参数和制造工艺稍作调整就可以形成混合PIN-肖特基结二极管(merged PIN Schottky,MPS)。由于碳化硅二极管基本工作在单极型状态下,反向恢复电荷量基本为零,可以大幅度地减少二极管反向恢复引起的自身瞬态损耗以及相关的IGBT开通瞬态损耗,非常适用于开关频率较高的电路。

PIN结二极管在4~5kV或者以上的电压时具有优势,由于其内部的电导调制作用而呈现出较低的导通电阻,使得它比较适用于高电压应用场合。有文献报道阻断电压为14.9和19.5kV的超高压PIN二极管,其正向和反向导通特性如图1所示,在电流密度为100 A/cm2时,其正向压降分别仅为4.4和6.5V[1]。这种高压的PIN二极管在电力系统,特别是高压直流输电领域具有潜在的应用价值。

2.3碳化硅MOSFET器件

功率MOSFET具有理想的栅极绝缘特性、高速的开关性能、低导通电阻和高稳定性,在硅基器件中,功率MOSFET获得巨大成功。同样,碳化硅MOSFE也是最受瞩目的碳化硅功率开关器件,其最明显的优点是,驱动电路非常简单及与现有的功率器件(硅功率MOSFET和IGBT)驱动电路的兼容性。碳化硅功率MOSFET面临的两个主要挑战是栅氧层的长期可靠性问题和沟道电阻问题。

随着碳化硅MOSFET技术的进步,高性能的碳化硅MOSFET也被研发出来,已有研究结果报道了具有较大的电压电流能力的碳化硅MOSFET器件。三菱公司报道的1.2kV碳化硅MOSFET器件的导通比电阻为5mΩ·cm 2,比硅基的CoolMOS的性能指数好15~20倍。美国Cree公司报道了8.1mm×8.1mm、阻断电压10 kV、电流20 A的碳化硅MOSFET芯片,其正向阻断特性如图2所示。通过并联这样的芯片得到的模块可以具备100 A的电流传输能力[3]。该器件在20 V的栅压下的通态比电阻为127 mΩ·cm2,同时具有较好的高温特性,在200℃条件下,零栅压时可以实现阻断10 kV电压。在碳化硅MOSFET的可靠性研究方面,有研究报道了在350℃下碳化硅栅氧层具有良好的可靠性[8]。如图3所示,20年以来碳化硅MOSFET栅氧层的可靠性得到明显提高。这些研究结果表明,栅氧层将有望不再是碳化硅MOSFET的一个瓶颈。

2.4碳化硅IGBT

在高压领域,碳化硅IGBT器件将具有明显的优势。由于受到工艺技术的制约,碳化硅IGBT的起步较晚,高压碳化硅IGBT面临两个挑战:第一个挑战与碳化硅MOSFET器件相同,沟道缺陷导致的可靠性以及低电子迁移率问题;第二个挑战是N型IGBT需要P型衬底,而P型衬底的电阻率比N型衬底的电阻率高50倍。因此,1999年制成的第一个IGBT采用了P型衬底。经过多年的研发,逐步克服了P型衬底的电阻问题,2008年报道了13 kV的N沟道碳化硅IGBT器件,比导通电阻达到22mΩ·cm 2[3]。图4对15kV的N-IGBT和MOSFET的正向导通能力做了一个比较[4],结果显示,在结温为300 K时,在芯片功耗密度为200 W/cm2以下的条件下,MOSFET可以获得更大的电流密度,而在更高的功耗密度条件下,IGBT可以获得更大的电流密度。但是在结温为127℃时,IGBT在功耗密度为50 W/cm2以上的条件下就能够导通比MOSFET更高的电流密度。同一年,该团队还报道了阻断电压达到12kV的P沟道碳化硅IGBT,导通比电阻达到14mΩ·cm 2[8]。新型高温高压碳化硅IGBT器件将对大功率应用,特别是电力系统的应用产生重大的影响。在15kV以上的应用领域,碳化硅IGBT综合了功耗低和开关速度快的特点,相对于碳化硅的MOSFET以及硅基的IGBT、晶闸管等器件具有显著的技术优势,特别适用于高压电力系统应用领域。

3碳化硅功率器件在电力系统中的应用展望

3.1固态变压器

随着分布式发电系统、智能电网技术以及可再生能源的发展,固态变压器作为其中的关键技术受到广泛关注。固态变压器是一种以电力电子技术为核心的变电装置,它通过电力电子变流器和高频变压器实现电力系统中的电压变换和能量传递及控制,以取代电力系统中的传统的工频变压器。与传统变压器相比,具有体积小、重量轻等优点,同时具有传统变压器所不具备的诸多优点,包括供电质量高、功率因数高、自动限流、具备无功补偿能力、频率变换、输出相数变换以及便于自动监控等优点。固态变压器的输入侧电压等级非常高,一般在数千至数万伏,目前多采用拓扑或器件串联的方式,结构较为复杂。图5所示为10kVA的固态变压器示意图。新兴的碳化硅电力电子器件,特别是15kV以上碳化硅MOSFET、IGBT的出现,将有利于固态变压器的结构简化及可靠性提升。

总结!

在当前节能减排的重大国际发展趋势下,对于碳化硅功率器件而言,其优势明显。可以预见,新型高压大容量碳化硅功率器件将在高压电力系统中开辟出全新的应用,对电力系统的发展和变革产生持续的重大影响。

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    334

    文章

    27327

    浏览量

    218341
  • 电力系统
    +关注

    关注

    18

    文章

    3525

    浏览量

    54889
  • 功率器件
    +关注

    关注

    41

    文章

    1763

    浏览量

    90423
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2810

    浏览量

    62625
  • 碳化硅
    +关注

    关注

    25

    文章

    2753

    浏览量

    49029

原文标题:碳化硅功率器件的发展现状及其在电力系统中的应用展望

文章出处:【微信号:国晶微第三代半导体碳化硅SiC,微信公众号:国晶微第三代半导体碳化硅SiC】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    碳化硅深层的特性

    。强氧化气体1000℃以上与SiC反应,并分解SiC.水蒸气能促使碳化硅氧化在有50%的水蒸气的气氛,能促进绿色碳化硅氧化从100℃开始,随着温度的提高,氧化程度愈为明显,到140
    发表于 07-04 04:20

    碳化硅基板——三代半导体的领军者

    超过40%,其中以碳化硅材料(SiC)为代表的第三代半导体大功率电力电子器件是目前电力电子领域
    发表于 01-12 11:48

    碳化硅陶瓷线路板,半导体功率器件的好帮手

    已经成为全球最大的半导体消费国,半导体消费量占全球消费量的比重超过40%,其中以碳化硅材料(SiC)为代表的第三代半导体大功率电力电子器件是目前
    发表于 03-25 14:09

    传统的硅组件、碳化硅(Sic)和氮化镓(GaN)

    系统能做得越小巧,则电动车的电池续航力越高。这是电动车厂商之所以对碳化硅解决方案趋之若鹜的主要原因。相较于碳化硅功率
    发表于 09-23 15:02

    功率模块的完整碳化硅性能怎么样?

      本文重点介绍赛米控碳化硅功率模块的性能,特别是SEMITRANS 3模块和SEMITOP E2无基板模块。  分立器件(如 TO-2
    发表于 02-20 16:29

    归纳碳化硅功率器件封装的关键技术

    ,导通电阻更低;碳化硅具有高电子饱和速度的特性,使器件可工作更高的开关频率;同时,碳化硅材料更高的热导率也有助于提升系统的整体
    发表于 02-22 16:06

    SiC器件新能源电力系统发展分析和展望

    新能源电力系统发展进行了分析和展望。  02  低寄生电感封装技术  2.1 芯片无应力封装  为降低高压碳化硅模块的寄生电感,同时消除
    发表于 02-27 14:22

    图腾柱无桥PFC混合碳化硅分立器件的应用

    75A的混合碳化硅分立器件,并同时推出了TO-247-3和TO-247-4封装(如上图),使得客户不需要更改电源电路和PCB的基础上,直接进行Pin To Pin替换验证测试及使用,
    发表于 02-28 16:48

    11.6 碳化硅和硅功率器件的性能比较∈《碳化硅技术基本原理——生长、表征、器件和应用》

    11.6碳化硅和硅功率器件的性能比较第11章碳化硅器件电力
    的头像 发表于 04-24 11:34 857次阅读
    11.6 <b class='flag-5'>碳化硅</b>和硅<b class='flag-5'>功率</b><b class='flag-5'>器件</b>的性能比较∈《<b class='flag-5'>碳化硅</b>技术基本原理——生长、表征、<b class='flag-5'>器件</b>和应用》

    国内碳化硅功率器件发展现状及未来趋势

    主驱采用碳化硅,综合损耗比硅器件降低70%,行程里程提升约5%。OBC上采用碳化硅器件数量减半,意味着被动
    发表于 11-20 16:23 1409次阅读
    国内<b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的<b class='flag-5'>发展现状及</b>未来趋势

    碳化硅功率器件的特点和应用现状

      随着电力电子技术的不断发展碳化硅(SiC)功率器件作为一种新型的半导体材料,
    的头像 发表于 12-14 09:14 763次阅读

    碳化硅功率器件的优势应及发展趋势

    随着科技的不断进步,碳化硅(SiC)作为一种新型的半导体材料,功率器件领域的应用越来越广泛。碳化硅功率
    的头像 发表于 01-06 14:15 741次阅读

    碳化硅功率器件的优点和应用

    碳化硅(SiliconCarbide,简称SiC)功率器件是近年来电力电子领域的一项革命性技术。与传统的硅基功率
    的头像 发表于 09-11 10:44 506次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的优点和应用

    碳化硅功率器件的优势和应用领域

    电力电子领域,碳化硅(SiC)功率器件正以其独特的性能和优势,逐步成为行业的新宠。碳化硅作为一
    的头像 发表于 09-13 10:56 673次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的优势和应用领域

    碳化硅功率器件的工作原理和应用

    碳化硅(SiC)功率器件近年来电力电子领域取得了显著的关注和发展。相比传统的硅(Si)基
    的头像 发表于 09-13 11:00 554次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的工作原理和应用