氮化镓是半导体与微电子产业的新星,其高电子能量的特性使其拥有极高的电能转换效率和优秀的高频特性。业界已经公认氮化镓(GaN)半导体器件产品将统治微波放大和电能转换领域,市场规模大于150亿美元。那么氮化镓工艺优点是什么呢?
AlGaN / GaN高电子迁移率晶体管(HEMT)是开关功率晶体管的有希望的候选者,因为它们具有高的断态击穿强度以及导通状态下的优异沟道导电性。这些特征是GaN的特殊物理特性与其异质结构材料AlGaN的组合。最重要的特征之一是材料的击穿强度。与Si相比,这种参数GaN比Si高10倍。这意味着与Si器件相比,对于给定的器件尺寸,可以将10倍的电压施加到GaN器件上。如果器件接通,则剩余的导通状态电阻Ron定义了这种情况下的器件损耗。由于具体的导通电阻Ron与维持给定击穿电压所需的器件漂移区的长度成比例,因此更紧凑的GaN器件具有尽可能低的导通电阻,具有Si器件。
此外,由于GaN / AlGaN HEMT的电子传输特性,与具有相同额定电压的Si功率器件相比,特定的导通电阻几乎低两个数量级。因此,GaN器件同时实现高击穿电压和高电流水平,并具有小的半导体区域。这另外转化为高功率水平下的高开关频率。根据现有技术,GaN功率器件的静态导通电阻优于硅功率电子器件,并且接近碳化硅(SiC)器件的性能。
氮化镓工艺优点:
①禁带宽度大(3.4eV),热导率高(1.3W/cm-K),则工作温度高,击穿电压高,抗辐射能力强;
②导带底在Γ点,而且与导带的其他能谷之间能量差大,则不易产生谷间散射,从而能得到很高的强场漂移速度(电子漂移速度不易饱和);
③GaN易与AlN、InN等构成混晶,能制成各种异质结构,已经得到了低温下迁移率达到105cm2/Vs的2-DEG(因为2-DEG面密度较高,有效地屏蔽了光学声子散射、电离杂质散射和压电散射等因素);
④晶格对称性比较低(为六方纤锌矿结构或四方亚稳的闪锌矿结构),具有很强的压电性(非中心对称所致)和铁电性(沿六方c轴自发极化):在异质结界面附近产生很强的压电极化(极化电场达2MV/cm)和自发极化(极化电场达3MV/cm),感生出极高密度的界面电荷,强烈调制了异质结的能带结构,加强了对2-DEG的二维空间限制,从而提高了2-DEG的面密度(在AlGaN/GaN异质结中可达到1013/cm2,这比AlGaAs/GaAs异质结中的高一个数量级),这对器件工作很有意义。
由于氮化镓技术在低功耗、小尺寸等方面具有独特的优势,氮化镓技术在功率器件市场大受欢迎。GaN 就是这样一种创新,通过最大限度地降低电力转换方面的功率损耗,它必将提高我们的能源使用效率。
本文整理自百度百科、个人图书馆、与非网
-
半导体
+关注
关注
334文章
27305浏览量
218161 -
氮化镓
+关注
关注
59文章
1629浏览量
116308 -
GaN
+关注
关注
19文章
1933浏览量
73312
发布评论请先 登录
相关推荐
评论