氮化镓(GaN)是一种直接带隙半导体,宽带隙为3.4 eV(电子伏特),比砷化镓(GaAs)宽2.4倍,比硅宽3倍。具有禁带宽度大、击穿电场高、饱和电子速率大、热导率高、化学性质稳定和抗辐射能力强等优点,成为高温、高频、大功率微波器件的优选材料之一,其目前主要用于功率器件领域,在高频通信领域也将有极大应用潜力。
在技术发展前景方面,氮化镓半导体仍将是全球主要国家的科技攻关重点方向,预计未来全球氮化镓行业将迎来一段技术快速发展期。在市场前景方面,氮化镓是研制微电子器件、光电子器件的新型半导体材料,在光电子、激光器、高温大功率器件和高频微波器件应用方面有着广阔的前景。预计到2026年全球氮化镓元件市场规模将增长到423亿美元,年均复合增长率约为13.5%。
氮化镓用途有哪些方面
1、射频器件方面
射频氮化镓器件主要应用于5G基站、卫星、雷达等领域。
2、功率器件方面
功率氮化镓器件主要应用于快充、逆变器、汽车电子电源开关、高端服务器领域。
文章整合自:新世界、microsemi、财经密探者
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
相关推荐
,引入了“氮化镓(GaN)”的充电器和传统的普通充电器有什么不一样呢?今天我们就来聊聊。材质不一样是所有不同的根本
传统的普通充电器,它的基
发表于 01-15 16:41
近日,国内氮化镓功率半导体领域的佼佼者——英诺赛科(苏州)科技股份有限公司,在香港联合交易所主板成功挂牌上市。此举标志着国内氮化镓半导体第一股正式诞生,为行业树立了新的里程碑。 英诺赛
发表于 01-02 14:36
•241次阅读
在消费类快充电源市场中,氮化镓有着广泛的应用,如今已有数十家主流电源厂商开辟了氮化镓快充产品线,推出的氮化
发表于 12-24 16:06
•387次阅读
概述
SW1108P 是一款针对离线式反激变换器的高性能高集成度准谐振电流模式 PWM 控制器。
SW1108P 内置 6V 的驱动电压,可直接用于驱动氮化镓功率管;芯片工作于带谷底锁定功能
的谷底
发表于 11-04 09:00
氮化镓(GaN),作为一种具有独特物理和化学性质的半导体材料,近年来在电子领域大放异彩,其制成的氮化镓功率芯片在功率转换效率、开关速度及耐高温等方面
发表于 10-29 16:23
•497次阅读
9月,英飞凌宣布成功开发出全球首款12英寸(300mm)功率氮化镓(GaN)晶圆。12英寸晶圆与8英寸晶圆相比,每片能多生产2.3倍数量的芯片,技术和效率显著提升。这一突破将极大地推动氮化镓
发表于 10-25 11:25
•833次阅读
SiC和GaN被称为“宽带隙半导体”(WBG)。由于使用的生产工艺,WBG设备显示出以下优点:1.宽带隙半导体氮化镓(GaN)和碳化硅(SiC)在带隙和击穿场方面相对相似。氮化
发表于 09-16 08:02
•830次阅读
如今,以碳化硅、氮化镓等为代表的第三代半导体新材料得到广泛应用,它们具有更高的导热率和抗辐射能力,以及更大的电子饱和漂移速率等特点。氮化镓热稳定性好、饱和电流密度高、耐压能力强大,
发表于 09-12 11:21
•505次阅读
氮化镓(GaN)和砷化镓(GaAs)都是半导体材料领域的重要成员,它们在各自的应用领域中都展现出了卓越的性能。然而,要判断哪个更先进,并不是一个简单的二元对立问题,因为它们的先进性取决于具体的应用场
发表于 09-02 11:37
•3116次阅读
的电子迁移率和较低的损耗,使其在高频应用方面表现出色。这使得氮化镓成为制造微波器件、功率放大器以及射频IC等高频电子设备的理想材料。 氮化镓
发表于 09-02 11:26
•1901次阅读
氮化镓是一种由氮和镓结合而来的化合物,其中氮在元素周期表排序第7位,镓排序第31位,7月31日世界氮化镓
发表于 08-21 10:03
•684次阅读
本文要点氮化镓是一种晶体半导体,能够承受更高的电压。氮化镓器件的开关速度更快、热导率更高、导通电阻更低且击穿强度更高。氮化
发表于 07-06 08:13
•1026次阅读
氮化镓快充技术主要通过将氮化镓功率器件应用于充电器、电源适配器等充电设备中,以提高充电效率和充电速度。光耦技术作为一种能够将电信号转换成光信号并实现电气与光学之间隔离的器件,为
发表于 06-26 11:15
•469次阅读
全球氮化镓功率半导体行业的领军者Transphorm, Inc.和USB PD控制器集成电路的佼佼者伟诠电子联合宣布,双方已成功推出两款新型系统级封装氮化镓器件(SiP)。这两款新品与
发表于 05-23 11:20
•685次阅读
电子发烧友网报道(文/刘静)氮化镓是最新的第三代半导体材料,最早是在1932年由W.C.Johnson等人首次合成,2019年开启在快充领域大规模商用。经过五六年的培育,氮化镓的应用领
发表于 03-28 09:06
•3169次阅读
评论