0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

IMEC发布芯片微缩路线图:2036年进入0.2 nm时代

jf_BPGiaoE5 来源:半导体行业观察 2023-02-06 16:01 次阅读

由于数字应用和数据处理的迅速兴起,计算能力需求呈爆炸式增长。随着越来越多地使用人工智能来应对我们这个时代的主要挑战,例如气候变化或粮食短缺,从现在开始,计算需求预计每六个月就会翻一番。为了以可持续的方式处理呈指数级增长的数据量,我们需要改进的高性能半导体技术。为了实现这一目标,我们需要同时应对五个挑战。虽然世界上没有一家公司可以单独完成这一目标,但整个半导体生态系统的共同创新和协作将使摩尔定律得以延续:这是 imec 未来 15 至 20 年雄心勃勃的路线图的关键信息

一次五面墙

缩放墙:纯光刻支持的缩放正在放缓。由于微芯片晶体管的单个结构正在接近原子的大小,量子效应开始干扰微芯片的运行,这变得越来越困难。

内存墙:系统性能面临内核和内存之间的数据路径限制。事实上:内存带宽跟不上处理器性能。我们每秒有更多的触发器而不是每秒千兆字节。

功率墙:将功率引入芯片并从芯片封装中提取热量变得越来越具有挑战性,因此我们必须开发改进的功率传输和冷却概念。

可持续性墙:半导体设备的制造导致环境足迹不断增加,包括温室气体和水、自然资源和电力消耗。

成本墙:显然,芯片制造成本可能会随着复杂性的增加以及设计和工艺开发成本的增加而激增。

拆墙

乍一看,戈登摩尔的预言看起来并不那么美好,他首先指出密集集成电路IC) 中的晶体管数量大约每两年翻一番。如果我们顽固地坚持 Dennard 缩放和传统的 Von Neumann 计算架构,这种预测尤其正确。

在其扩展路线图中,imec 为芯片技术的未来提出了一条替代路径,在架构、材料、晶体管的新基本结构以及……范式转变方面进行了根本性的改变。到 2036 年,imec 路线图将使我们从 7 nm 到 0.2 nm 或 2 ångström,保持两到两年半的介绍速度。

首先,光刻技术的不断进步将是进一步缩小尺寸的关键:传统的光刻技术使用光,而如今,光的波长大于图案所需的精度。这就是引入极紫外 (EUV) 光刻的原因。它现在出现在越来越多的用于批量生产的功能性生产带上。EUV 将把我们从5纳米时代带到2纳米时代。为了变得更小,我们需要 EUV 的更新版本,High NA-EUV,以及更大的镜头。它们的直径为 1 米,精度为 20 皮米。对于High NA EUV,ASML 正在开发的第一个原型将于 2023 年面世。预计在 2025 年或 2026 年的某个时候投入大批量生产。为了降低在制造业中引入的风险,imec 与阿斯麦正在紧密合作。

同时我们还需要晶体管架构的创新。如今,几乎所有芯片制造商都使用FinFET晶体管制造微芯片。然而,进入 3nm 代时,FinFET 受到量子干扰,导致微芯片运行中断。

接下来是环栅 (GAA)或纳米片晶体管,由纳米片堆叠而成,它将提供改进的性能和改善的短沟道效应。从 2 nm 开始,这种架构将是必不可少的。三星英特尔和台积电等主要芯片制造商已经宣布,他们将在其 3 纳米和/或 2 纳米节点中引入 GAA 晶体管。forksheet 晶体管是 imec 的发明,甚至比 nanosheet 晶体管更密集,将 gate-all-around 概念扩展到 1 nm 一代。forksheet 架构在负沟道和正沟道之间引入了屏障,使沟道更加靠近。该架构有望使单元尺寸缩小 20%。

通过将负沟道和正沟道相互叠加,可以实现进一步的缩放,称为互补 FET (CFET) 晶体管,是 GAA 的复杂垂直继承者。它显着提高了密度,但以增加工艺复杂性为代价,尤其是接触晶体管的源极和漏极。

随着时间的推移,CFET 晶体管将采用原子厚度的新型超薄二维单层材料,如二硫化钨 (WS2) 或钼。该器件路线图与光刻路线图相结合,将带我们进入埃格斯特伦时代。

b5cc64c8-a4d5-11ed-bfe3-dac502259ad0.jpg

这些亚 2 纳米晶体管的系统级还面临着另外两个挑战。内存带宽跟不上 CPU 性能。处理器的运行速度不能超过从内存中获取数据和指令的速度。要推倒这堵“内存墙”,内存必须离芯片更近。拆除内存墙的一种有趣方法是 3D 片上系统 (3D SOC) 集成,它超越了当今流行的小芯片方法。按照这种异构集成方法,系统被划分为独立的芯片,这些芯片在三维中同时设计和互连。例如,它将允许在核心逻辑设备上为 level-1-Cash 堆叠一个 SRAM 内存层,从而实现内存与逻辑的快速交互。

关于与系统相关的挑战,为芯片提供足够的功率并散发热量变得更加困难。然而,一个解决方案就在眼前:配电现在从晶圆顶部穿过十多个金属层到达晶体管。Imec 目前正在研究晶圆背面的解决方案。我们会将电源轨沉入晶圆,并使用更宽、电阻更小的材料中的纳米硅通孔将它们连接到背面。这种方法将电力传输网络信号网络分离,提高整体电力传输性能,减少路由拥塞,并最终允许进一步标准单元高度缩放。

最后,半导体制造是有代价的。它需要大量的能源和水,并产生危险废物。但整个供应链需要致力于解决这个问题,而生态系统方法将是必不可少的。去年,imec 启动了可持续半导体技术和系统 (SSTS) 研究计划,该计划汇集了半导体价值链的利益相关者——从亚马逊、苹果和微软等大型系统公司到供应商,包括 ASM、ASML、KURITA、SCREEN、和东京电子。目标是减少整个行业的碳足迹。该计划评估新技术对环境的影响,确定影响大的问题,并在技术开发的早期定义更环保的半导体制造解决方案。

模式转变

从长远来看,冯诺依曼架构需要彻底改革。冯·诺依曼教授将数字计算机视为一个具有输入、中央处理器和输出的系统。但我们需要向特定领域和应用程序相关的架构发展,大规模并行化可与人脑的工作方式相媲美。这意味着 CPU 将扮演更小的角色,有利于为特定工作负载定制电路。

这种范式转变,加上前方的障碍,标志着半导体行业有趣时代的开始。我们需要在整个半导体生态系统中进行共同创新和协作:代工厂、IDM、无晶圆厂、fab-lite、设备和材料供应商。不仅仅是为了满足摩尔定律,而是因为半导体是高性能深度技术应用的核心,可以在应对气候变化、可持续交通、空气污染和食物短缺等我们这个时代的挑战方面取得有影响力的进展。 赌注很高。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    456

    文章

    50982

    浏览量

    425085
  • 晶体管
    +关注

    关注

    77

    文章

    9708

    浏览量

    138558
  • 半导体行业
    +关注

    关注

    9

    文章

    403

    浏览量

    40563
  • 半导体设备
    +关注

    关注

    4

    文章

    348

    浏览量

    15134

原文标题:IMEC发布芯片微缩路线图:2036年进入0.2 nm时代

文章出处:【微信号:光刻人的世界,微信公众号:光刻人的世界】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    关于RISC-V学习路线图推荐

    一个号的RISC-V学习路线图可以帮助学习者系统地掌握RISC-V架构的相关知识。比如以下是一个较好的RISC-V学习路线图: 一、基础知识准备 计算机体系结构基础 : 了解计算机的基本组成、指令集
    发表于 11-30 15:21

    未来10智能传感器怎么发展?美国发布最新MEMS路线图

    此前,美国半导体工业协会(下文简称“SIA”)和美国半导体研究联盟(下文简称“SRC”),联合发布了未来10(2023-2035)全球半导体产业技术发展路线图——微电子和先进封装技术路线图
    的头像 发表于 11-27 16:39 1060次阅读
    未来10<b class='flag-5'>年</b>智能传感器怎么发展?美国<b class='flag-5'>发布</b>最新MEMS<b class='flag-5'>路线图</b>

    2024学习生成式AI的最佳路线图

    本文深入探讨了2024最佳生成式AI路线图的细节,引领我们穿越动态进展、新兴趋势以及定义这一尖端领域的变革应用。引言在日新月异的人工智能领域,生成式AI犹如创新的灯塔,不断拓展创造力与智慧的边界
    的头像 发表于 07-26 08:28 605次阅读
    2024学习生成式AI的最佳<b class='flag-5'>路线图</b>

    三星电子公布2024异构集成路线图,LP Wide I/O移动内存即将面世

    7月17日,三星电子公布了其雄心勃勃的2024异构集成路线图,其中一项关键研发成果引发了业界广泛关注——一款名为LP Wide I/O的创新型移动内存即将面世。这款内存不仅预示着存储技术的又一次
    的头像 发表于 07-17 16:44 1029次阅读
    三星电子公布2024<b class='flag-5'>年</b>异构集成<b class='flag-5'>路线图</b>,LP Wide I/O移动内存即将面世

    三星展望2027:1.4nm工艺与先进供电技术登场

    在半导体技术的竞技场上,三星正全力冲刺,准备在2027推出一系列令人瞩目的创新。近日,三星晶圆代工部门在三星代工论坛上公布了其未来几年的技术路线图,其中包括备受瞩目的1.4nm制程工艺、芯片
    的头像 发表于 06-21 09:30 421次阅读

    三星公布最新工艺路线图

    来源:综合报道 近日,三星电子在加州圣何塞的设备解决方案美国总部举办三星晶圆代工论坛(Samsung Foundry Forum, SFF),公布了其最新代工技术路线图和成果。 以下是主要亮点
    的头像 发表于 06-17 15:33 418次阅读
    三星公布最新工艺<b class='flag-5'>路线图</b>

    三星芯片制造技术路线图出炉,意强化AI芯片代工市场竞争力

    在科技日新月异的当下,三星电子公司作为全球领先的科技企业之一,再次展示了其在芯片制造领域的雄心壮志。6月13日,据彭博社等权威媒体报道,三星电子在其位于加州圣何塞的美国芯片总部举办的年度代工论坛上,公布了其最新的芯片制造技术
    的头像 发表于 06-13 15:05 845次阅读

    英飞凌为AI数据中心提供先进的高能效电源装置产品路线图

    英飞凌科技股份公司已翻开AI系统能源供应领域的新篇章,发布了电源装置(PSU)产品路线图。该路线图在优先考虑能源效率前提下,专为满足AI数据中心当前和未来的能源需求而设计。
    发表于 06-03 18:24 650次阅读
    英飞凌为AI数据中心提供先进的高能效电源装置产品<b class='flag-5'>路线图</b>

    iPhone升级路线图曝光:1后才配12G内存,2026有折叠屏

    有博主曝光了苹果接下来更新iPhone的路线图,时间跨度从2023-2027
    的头像 发表于 05-20 10:54 1082次阅读

    事关卫星物联网!LoRaWAN 2027 发展路线图重磅公布

    4月16日,LoRa联盟(LoRaAlliance)发布了LoRaWAN开发路线图,以引导该标准未来演进的方向。LoRaWAN开发路线图LoRa作为低功耗广域网通信领域的“明星”之一
    的头像 发表于 04-26 08:06 531次阅读
    事关卫星物联网!LoRaWAN 2027 发展<b class='flag-5'>路线图</b>重磅公布

    安霸发布5nm制程的CV75S系列芯片,进一步拓宽AI SoC产品路线图

    防展(ISC West)期间发布 5nm 制程的 CV75S 系列芯片,进一步拓宽其 AI SoC 产品路线图
    的头像 发表于 04-09 10:26 1810次阅读

    美国公布3D半导体路线图

    的约300名个人共同努力制定。 MAPT路线图定义了关键的研究重点和必须解决的技术挑战,以支持20211月发布的“半导体十计划”中概述的重大转变。MAPT
    的头像 发表于 03-25 17:32 761次阅读

    纳微半导体发布最新AI数据中心电源技术路线图

    纳微半导体,作为功率半导体领域的佼佼者,以及氮化镓和碳化硅功率芯片的行业领头羊,近日公布了其针对AI人工智能数据中心的最新电源技术路线图。此举旨在满足未来12至18个月内,AI系统功率需求可能呈现高达3倍的指数级增长。
    的头像 发表于 03-16 09:39 985次阅读

    纳微半导体发布最新AI数据中心电源技术路线图

    (纳斯达克股票代码:NVTS)发布了 最新的AI人工智能数据中心电源技术路线图 ,以满足 未来12-18个月内呈最高3倍指数级增长 的AI系统功率需求。 传统CPU通常只需300W的功率支持,而 数据中心的AC-DC电源通常可为功率10倍于传统CPU(即3000W)的应用
    发表于 03-13 13:48 609次阅读
    纳微半导体<b class='flag-5'>发布</b>最新AI数据中心电源技术<b class='flag-5'>路线图</b>

    Arm 更新 Neoverse 产品路线图,实现基于 Arm 平台的人工智能基础设施

    Neoverse CSS 产品;与 CSS N2 相比,其单芯片性能可提高 50% Arm Neoverse CSS N3 拓展了 Arm 领先的 N 系列 CSS 产品路线图;与 CSS N2 相比
    发表于 02-22 11:41 402次阅读