0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器视觉常用的3种目标识别方法

jf_78858299 来源: 机器视觉沙龙 作者: 机器视觉沙龙 2023-02-07 12:00 次阅读

随着机器视觉技术的快速发展,传统很多需要人工来手动操作的工作,渐渐地被机器所替代。

传统方法做目标识别大多都是靠人工实现,从形状、颜色、长度、宽度、长宽比来确定被识别的目标是否符合标准,最终定义出一系列的规则来进行目标识别。这样的方法当然在一些简单的案例中已经应用的很好,唯一的缺点是随着被识别物体的变动,所有的规则和算法都要重新设计和开发,即使是同样的产品,不同批次的变化都会造成不能重用的现实。

而随着机器学习深度学习的发展,很多肉眼很难去直接量化的特征,深度学习可以自动学习这些特征,这就是深度学习带给我们的优点和前所未有的吸引力。

**很多特征我们通过传统算法无法量化,或者说很难去做到的,深度学习可以。**特别是在图像分类、目标识别这些问题上有显著的提升。

视觉常用的目标识别方法有三种:Blob分析法(BlobAnalysis)、模板匹配法、深度学习法。下面就三种常用的目标识别方法进行对比。

Blob分析法

BlobAnalysis

计算机视觉中的Blob是指图像中的具有相似颜色、纹理等特征所组成的一块连通区域。Blob分析(BlobAnalysis)是对图像中相同像素的连通域进行分析(该连通域称为Blob)。

其过程就是将图像进行二值化,分割得到前景和背景,然后进行连通区域检测,从而得到Blob块的过程。简单来说,blob分析就是在一块“光滑”区域内,将出现“灰度突变”的小区域寻找出来。

举例来说,假如现在有一块刚生产出来的玻璃,表面非常光滑,平整。如果这块玻璃上面没有瑕疵,那么,我们是检测不到“灰度突变”的;相反,如果在玻璃生产线上,由于种种原因,造成了玻璃上面有一个凸起的小泡、有一块黑斑、有一点裂缝,那么,我们就能在这块玻璃上面检测到纹理,经二值化(BinaryThresholding)处理后的图像中色斑可认为是blob。而这些部分,就是生产过程中造成的瑕疵,这个过程,就是Blob分析。

Blob分析工具可以从背景中分离出目标,并可以计算出目标的数量、位置、形状、方向和大小,还可以提供相关斑点间的拓扑结构。在处理过程中不是对单个像素逐一分析,而是对图像的行进行操作。图像的每一行都用游程长度编码(RLE)来表示相邻的目标范围。这种算法与基于像素的算法相比,大大提高了处理的速度。

但另一方面,Blob分析并不适用于以下图像:

1.低对比度图像;

2.必要的图像特征不能用2个灰度级描述;

3.按照模版检测(图形检测需求)。

总的来说,Blob分析就是检测图像的斑点,适用于背景单一,前景缺陷不区分类别,识别精度要求不高的场景。

模板匹配法

template matching

模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。

换句话说就是一副已知的需要匹配的小图像,在一副大图像中搜寻目标,已知该图中有要找的目标,且该目标同模板有相同的尺寸、方向和图像元素,通过统计计算图像的均值、梯度、距离、方差等特征可以在图中找到目标,确定其坐标位置。

这就说明,我们要找的模板是图像里标标准准存在的,这里说的标标准准,就是说,一旦图像或者模板发生变化,比如旋转,修改某几个像素,图像翻转等操作之后,我们就无法进行匹配了,这也是这个算法的弊端。

所以这种匹配算法,就是在待检测图像上,从左到右,从上向下对模板图像与小东西的图像进行比对。

这种方法相比Blob分析有较好的检测精度,同时也能区分不同的缺陷类别,这相当于是一种搜索算法,在待检测图像上根据不同roi用指定的匹配方法与模板库中的所有图像进行搜索匹配,要求缺陷的形状、大小、方法都有较高的一致性,因此想要获得可用的检测精度需要构建较完善的模板库。

深度学习法

deep learning method

2014年R-CNN的提出,使得基于CNN的目标检测算法逐渐成为主流。深度学习的应用,使检测精度和检测速度都获得了改善。

卷积神经网络不仅能够提取更高层、表达能力更好的特征,还能在同一个模型中完成对于特征的提取、选择和分类。

在这方面,主要有两类主流的算法:

一类是结合RPN网络的,基于分类的R-CNN系列两阶目标检测算法(twostage);

另一类则是将目标检测转换为回归问题的一阶目标检测算法(singlestage)。

物体检测的任务是找出图像或视频中的感兴趣物体,同时检测出它们的位置和大小,是机器视觉领域的核心问题之一。

物体检测过程中有很多不确定因素,如图像中物体数量不确定,物体有不同的外观、形状、姿态,加之物体成像时会有光照、遮挡等因素的干扰,导致检测算法有一定的难度。

进入深度学习时代以来,物体检测发展主要集中在两个方向:twostage算法如R-CNN系列和onestage算法如YOLO、SSD等。两者的主要区别在于twostage算法需要先生成proposal(一个有可能包含待检物体的预选框),然后进行细粒度的物体检测。而onestage算法会直接在网络中提取特征来预测物体分类和位置。

两阶算法中区域提取算法核心是卷积神经网络CNN,先利用CNN骨干提取特征,然后找出候选区域,最后滑动窗口确定目标类别与位置。

R-CNN首先通过SS算法提取2k个左右的感兴趣区域,再对感兴趣区域进行特征提取。存在缺陷:感兴趣区域彼此之间权值无法共享,存在重复计算,中间数据需单独保存占用资源,对输入图片强制缩放影响检测准确度。

图片

SPP-NET在最后一个卷积层和第一个全连接层之间做些处理,保证输入全连接层的尺寸一致即可解决输入图像尺寸受限的问题。SPP-NET候选区域包含整张图像,只需通过一次卷积网络即可得到整张图像和所有候选区域的特征。

FastR-CNN借鉴SPP-NET的特征金字塔,提出ROIPooling把各种尺寸的候选区域特征图映射成统一尺度的特征向量,首先,将不同大小的候选区域都切分成M×N块,再对每块都进行maxpooling得到1个值。这样,所有候选区域特征图就都统一成M×N维的特征向量了。但是,利用SS算法产生候选框对时间消耗非常大。

FasterR-CNN是先用CNN骨干网提取图像特征,由RPN网络和后续的检测器共享,特征图进入RPN网络后,对每个特征点预设9个不同尺度和形状的锚盒,计算锚盒和真实目标框的交并比和偏移量,判断该位置是否存在目标,将预定义的锚盒分为前景或背景,再根据偏差损失训练RPN网络,进行位置回归,修正ROI的位置,最后将修正的ROI传入后续网络。但是,在检测过程中,RPN网络需要对目标进行一次回归筛选以区分前景和背景目标,后续检测网络对RPN输出的ROI再一次进行细分类和位置回归,两次计算导致模型参数量大。

MaskR-CNN在FasterR-CNN中加了并行的mask分支,对每个ROI生成一个像素级别的二进制掩码。在FasterR-CNN中,采用ROIPooling产生统一尺度的特征图,这样再映射回原图时就会产生错位,使像素之间不能精准对齐。

这对目标检测产生的影响相对较小,但对于像素级的分割任务,误差就不容忽视了。MaskR-CNN中用双线性插值解决像素点不能精准对齐的问题。但是,由于继承两阶段算法,实时性仍不理想。

一阶算法在整个卷积网络中进行特征提取、目标分类和位置回归,通过一次反向计算得到目标位置和类别,在识别精度稍弱于两阶段目标检测算法的前提下,速度有了极大的提升。

YOLOv1把输入图像统一缩放到448×448×3,再划分为7×7个网格,每格负责预测两个边界框bbox的位置和置信度。这两个b-box对应同一个类别,一个预测大目标,一个预测小目标。

bbox的位置不需要初始化,而是由YOLO模型在权重初始化后计算出来的,模型在训练时随着网络权重的更新,调整b-box的预测位置。但是,该算法对小目标检测不佳,每个网格只能预测一个类别。

YOLOv2把原始图像划分为13×13个网格,通过聚类分析,确定每个网格设置5个锚盒,每个锚盒预测1个类别,通过预测锚盒和网格之间的偏移量进行目标位置回归。

SSD保留了网格划分方法,但从基础网络的不同卷积层提取特征。随着卷积层数的递增,锚盒尺寸设置由小到大,以此提升SSD对多尺度目标的检测精度。

YOLOv3通过聚类分析,每个网格预设3个锚盒,只用darknet前52层,并大量使用残差层。使用降采样降低池化对梯度下降的负面效果。YOLOv3通过上采样提取深层特征,使其与将要融合的浅层特征维度相同,但通道数不同,在通道维度上进行拼接实现特征融合,融合了13×13×255、26×26×255和52×52×255共3个尺度的特征图,对应的检测头也都采用全卷积结构。

YOLOv4在原有YOLO目标检测架构的基础上,采用了近些年CNN领域中最优秀的优化策略,从数据处理、主干网络、网络训练、激活函数、损失函数等各个方面都进行了不同程度的优化。时至今日,已经有很多精度比较高的目标检测算法提出,包括最近视觉领域的transformer研究也一直在提高目标检测算法的精度。

总结来看,表示的选择会对机器学习算法的性能产生巨大的影响, 监督学习训练的前馈网络可视为表示学习的一种形式。依此来看传统的算法如Blob分析和模板匹配都是手工设计其特征表示,而神经网络则是通过算法自动学习目标的合适特征表示,相比手工特征设计来说其更高效快捷,也无需太多的专业的特征设计知识,因此其能够识别不同场景中形状、大小、纹理等不一的目标,随着数据集的增大,检测的精度也会进一步提高。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 计算机
    +关注

    关注

    19

    文章

    7489

    浏览量

    87876
  • 机器视觉
    +关注

    关注

    161

    文章

    4369

    浏览量

    120293
  • 目标识别
    +关注

    关注

    0

    文章

    41

    浏览量

    10438
收藏 人收藏

    评论

    相关推荐

    基于小波域NMF特征提取的SAR图像目标识别方法

    该文提出了一基于小波域非负矩阵分解特征提取的合成孔径雷达图像目标识别方法。该方法对图像二维离散小波分解后提取低频子带图像,用非负矩阵分解对低频子带图像提取特
    发表于 11-21 11:58 21次下载

    基于GNN-DS信息融合的目标识别方法

    针对当前目标识别系统中常用的信息融合方法识别率较低、运行速度慢、抗噪性差等问题,提出一基于神经网络组和 DS 证据理论的信息融合
    发表于 01-18 12:22 5次下载

    基于特征差异的彩色目标快速识别方法

    本文从人类视觉系统识别彩色目标的特点出发,提出一基于特征差异的彩色目标快速识别方法,从而有效地
    发表于 03-03 15:02 14次下载

    硬盘标识识别方法

    硬盘标识识别方法 Seagate硬盘的编号比较简单,其识别方法为:"ST+硬盘尺寸+容量+主标识+副标识+接口类型"。 &nbs
    发表于 09-04 12:56 6539次阅读

    常用塑料识别方法

    常用塑料识别方法
    发表于 11-19 10:30 562次阅读

    军事假目标识别的新方法

    通常的侦察手段对于军事假目标识别能力有限,文中提出了一新的军事假目标识别方法。在介绍偏振成像机理的基础上,分析了偏振信息检测和强度信息检测在物理含义中的区别。
    发表于 08-29 15:11 36次下载
    军事假<b class='flag-5'>目标识别</b>的新<b class='flag-5'>方法</b>

    基于相关分析的飞机目标识别方法

    提出了一基于相关分析的飞机目标识别方法。该方法利用飞机图像低频和高频部分合成滤波器模板,能达到很高识别率与很低的等错率。该研究旨在提高飞机识别
    发表于 09-02 14:54 21次下载

    基于RHT的局部有遮挡圆形目标识别方法顾肇瑞

    基于RHT的局部有遮挡圆形目标识别方法_顾肇瑞
    发表于 03-17 08:00 0次下载

    基于SIFT视觉词汇的目标识别算法

    针对被局部遮挡目标识别困难的问题,将目标图像的SIFT( Scale Invariant Feature Transform)特征矢量作为视觉单词,应用
    发表于 11-14 11:04 5次下载
    基于SIFT<b class='flag-5'>视觉</b>词汇的<b class='flag-5'>目标识别</b>算法

    机器视觉常用目标识别方法进行对比

    随着机器视觉技术的快速发展,传统很多需要人工来手动操作的工作,渐渐地被机器所替代。
    的头像 发表于 11-09 17:00 1761次阅读

    机器视觉常用3目标识别方法

    随着机器学习,深度学习的发展,很多肉眼很难去直接量化的特征,深度学习可以自动学习这些特征,这就是深度学习带给我们的优点和前所未有的吸引力。
    的头像 发表于 11-30 15:43 1077次阅读

    超详细!一文讲透机器视觉常用3 目标识别方法

    来源:机器视觉沙龙随着机器视觉技术的快速发展,传统很多需要人工来手动操作的工作,渐渐地被机器所替代。传统
    的头像 发表于 12-15 10:44 1128次阅读
    超详细!一文讲透<b class='flag-5'>机器</b><b class='flag-5'>视觉</b><b class='flag-5'>常用</b>的 <b class='flag-5'>3</b> <b class='flag-5'>种</b>“<b class='flag-5'>目标识别</b>”<b class='flag-5'>方法</b>

    机器视觉的图像目标识别方法操作要点

    通过加强图像分割,能够提高机器视觉的图像目标识别的自动化水平,使得图像目标识别效果更加显著。图像分割的方法有很多种,不同
    发表于 01-15 12:17 435次阅读

    机器视觉的图像目标识别方法综述

    文章来源:MEMS引言从20世纪80年代开始,机器视觉技术的发展速度不断加快,已经走进了人们的日常生活与工作之中。机器视觉的图像目标识别系统
    的头像 发表于 02-23 08:26 711次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>视觉</b>的图像<b class='flag-5'>目标识别方法</b>综述

    机器视觉常用的三目标识别方法解析

    随着机器视觉技术的快速发展,传统很多需要人工来手动操作的工作,渐渐地被机器所替代。传统方法目标识别大多都是靠人工实现,从形状、颜色、长度、
    的头像 发表于 03-14 08:26 724次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>视觉</b><b class='flag-5'>常用</b>的三<b class='flag-5'>种</b><b class='flag-5'>目标识别方法</b>解析