19
轮廓查找与绘制
核心要理解到在 OpenCV 中,查找轮廓就像在黑色背景中找白色物体。
常用函数:
最后应该掌握针对每个轮廓进行操作。
20
轮廓特征属性及应用
这部分内容比较重要,并且知识点比较多,核心内容与函数分别如下:
- 寻找凸包 cv2.convexHull() 与 凸性检测 cv2.isContourConvex();
- 轮廓外接矩形 cv2.boundingRect();
- 轮廓最小外接矩形 cv2.minAreaRect();
- 轮廓最小外接圆 cv2.minEnclosingCircle();
- 轮廓椭圆拟合 cv2.fitEllipse();
- 逼近多边形曲线 cv2.approxPolyDP();
- 计算轮廓面积 cv2.contourArea();
- 计算轮廓长度 cv2.arcLength();
- 计算点与轮廓的距离及位置关系 cv2.pointPolygonTest();
- 形状匹配 cv2.matchShapes()。
21
高级部分-分水岭算法及图像修补
掌握分水岭算法的原理,掌握核心函数 cv2.watershed() 。
可以扩展补充图像修补技术及相关函数 cv2.inpaint(),学习完毕可以尝试人像祛斑应用。
22
GrabCut & FloodFill 图像分割、角点检测
这部分内容都需要一些图像专业背景知识,先掌握相关概念知识,在重点学习相关函数。
- GrabCut 算法 cv2.grabCut();
- 漫水填充算法 cv2.floodFill();
- Harris 角点检测 cv2.cornerHarris();
- Shi-Tomasi 角点检测 cv2.goodFeaturesToTrack();
- 亚像素角点检测 cv2.cornerSubPix()。
23
特征检测与匹配
特征点的检测和匹配是计算机视觉中非常重要的技术之一, 在物体识别、视觉跟踪、三维重建等领域都有很广泛的应用。
OpenCV 提供了如下特征检测方法:
- “FAST” FastFeatureDetector;
- “STAR” StarFeatureDetector;
- “SIFT” SIFT(nonfree module) Opencv3 移除,需调用 xfeature2d 库;
- “SURF” SURF(nonfree module) Opencv3 移除,需调用 xfeature2d 库;
- “ORB” ORB Opencv3 移除,需调用 xfeature2d 库;
- “MSER” MSER;
- “GFTT” GoodFeaturesToTrackDetector;
- “HARRIS” (配合 Harris detector);
- “Dense” DenseFeatureDetector;
- “SimpleBlob” SimpleBlobDetector。
24
OpenCV 应用部分之运动物体跟踪与人脸识别
了解何为运动物体检测,OpenCV 中常用的运动物体检测方法有背景减法、帧差法、光流法,跟踪算法常用的有 meanShift, camShift,粒子滤波, 光流法 等。
- meanShift 跟踪算法 cv2.meanShift();
- CamShift 跟踪算法 cv2.CamShift()。
如果学习人脸识别,涉及的知识点为:
-
matlab
+关注
关注
182文章
2963浏览量
230171 -
OpenCV
+关注
关注
30文章
628浏览量
41268 -
python
+关注
关注
56文章
4782浏览量
84461
发布评论请先 登录
相关推荐
评论