26 、 图像分割
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。
1998年以来,研究人员不断改进原有的图像分割方法并把其它学科的一 些新理论和新方法用于图像分割,提出了不少新的分割方法。图像分割后提取出的目标可以用于图像语义识别,图像搜索等等领域。
中文名 图像分割
外文名 image segmentation
分割方法 阈值分割等
用途 图像语义识别,图像搜索
类型 计算机技术
学科 跨学科
发展实践 1998
27 、边缘检测
边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。
这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。 边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。
中文名边缘检测
领域 图像处理和计算机视觉
目的 标识数字图像中亮度变化明显的点
原因 深度上的不连续
原因 表面方向不连续
原因 物质属性变化和
检测方法
有许多用于边缘检测的方法, 他们大致可分为两类:基于搜索和基于零交叉。
基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示, 例如梯度模,然后,用计算估计边缘的局部方向, 通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。
基于零交叉的方法找到由图像得到的二阶导数的零交叉点来定位边缘。 通常用拉普拉斯算子或非线性微分方程的零交叉点。
滤波做为边缘检测的预处理通常是必要的,通常采用高斯滤波。
已发表的边缘检测方法应用计算边界强度的度量,这与平滑滤波有本质的不同。 正如许多边缘检测方法依赖于图像梯度的计算,他们用不同种类的滤波器来估计x-方向和y-方向的梯度。
步骤:
①滤波:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。需要指出,大多数滤波器在降低噪声的同时也导致了边缘强度的损失,因此,增强边缘和降低噪声之间需要折中。
②增强:增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将邻域(或局部)强度值有显著变化的点突显出来。边缘增强一般是通过计算梯度幅值来完成的。
③检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点。最简单的边缘检测判据是梯度幅值阈值判据。
④定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来。
在边缘检测算法中,前三个步骤用得十分普遍。这是因为大多数场合下,仅仅需要边缘检测器指出边缘出现在图像某一 像素点的附近,而没有必要指出边缘的精确位置或方向。
边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线。我们将边缘定义为图像中灰度发生急剧变化的区域边界。
图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以用局部图像微分技术来获得边缘检测算子。经典的边缘检测方法,是通过对原始图像中像素的某小邻域构造边缘检测算子来达到检测边缘这一目的的。
边缘检测算子:
一阶::Roberts Cross算子,Prewitt算子,Sobel算子, Kirsch算子,罗盘算子;
二阶: Marr-Hildreth,在梯度方向的二阶导数过零点,Canny算子,Laplacian算子。
28 、 工业相机基础知识
1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。
2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如 8mm /F1.4代表最大孔径为 5.7毫米 。F值越小,光圈越大,F值越大,光圈越小。
3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、2/3″、1″和1″以上。
4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。
5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;
焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。
6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。
7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。
8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。
9、光学放大倍数(Magnification,ß) CCD/FOV,即芯片尺寸除以视野范围。
10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。
数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。
11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个非常重要的参数,因为它直接影响镜头的配置。不同厂家的相机,哪怕接口一样也可能有不同的后倍焦。
30 、开操作与开操作
开操作是先腐蚀再膨胀,开操作是先膨胀再腐蚀。灰度图像是求最大最小值,二值图像是进行与运算。
二值形态学:
1.二值腐蚀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为1,则该像素为1,否则为0。中心及领域有一个点不是黑点,该点就被腐蚀成白点
2.二值膨胀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为0,则该像素为0,否则为1。
目的:开操作可以平滑物体轮廓,断开狭窄的间断和消除细小的突出物。
闭操作可以消弭狭窄的间断,消除小的孔洞。
-
滤波
+关注
关注
10文章
662浏览量
56593 -
图像处理
+关注
关注
27文章
1281浏览量
56637 -
HVS
+关注
关注
0文章
8浏览量
8563
发布评论请先 登录
相关推荐
评论