0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅基铌酸锂异质集成实现超高Q值SAW延迟线器件简析

MEMS 来源:异质集成XOI技术 2023-02-10 14:39 次阅读

1

工作简介

上海微系统所异质集成XOI课题组基于自主研制的高质量LiNbO3-on-SiC单晶压电异质衬底实现了超高Q值(Qmax=11174)的声表面波(SAW)延迟线器件,为GHz频段当前国际报道的最高值。相关研究工作以“Gigahertz Acoustic Delay Lines in Lithium Niobate on Silicon Carbide with Propagation-Q of 11174”为题发表于国际微电子器件领域标志性期刊IEEE Electron Device Letters (IEEE EDL)。

2

研究背景

射频延迟线器件广泛应用于通信系统、雷达、精密仪器等领域。由于声表面波的传播速度比电磁波低5个数量级,声表面波延迟线可实现微型化封装,且传输损耗不足微波传输线的百分之一。近年来,随着各类基于声表面波延迟线结构的新型射频器件(如耦合器放大器、环行器等)被相继报道,集成声学射频芯片有望成为未来研究热点。因此,确定低损耗、大带宽、高稳定性的压电材料平台是关键一环。

pYYBAGPl5waAa6poAADN7bIZRxQ044.jpg

图1 LiNbO3与4种常见衬底材料的关键物理性能对比

基于传统LiNbO3体材料的延迟线器件主要基于瑞利模态,其存在带宽不足的问题;而基于悬空LiNbO3薄膜的延迟线器件机械稳定性和功率容量不足。为全方位提升SAW延迟线的器件性能,本团队提出了LiNbO3-on-SiC的异质集成结构。图1为LiNbO3与4种常见衬底材料的关键物理性能对比,可以发现SiC相比于其它材料有着最高的体波声速、热导率以及f*Q值,且SiC的射频损耗亦远低于Si。因此通过LiNbO3与SiC的异质集成有望实现SAW延迟线的性能飞跃。

3

研究亮点

上海微系统所异质集成XOI课题组利用“万能离子刀”智能剥离和转移技术制备了4英寸X切LiNbO3-on-SiC压电异质集成衬底,并基于图2(a-b)所示的结构制备了一系列的GHz延迟线器件。对于双端口的延迟线,输出端口尽可能地“捕获”输入端口的能量是低损耗的关键所在,虽然高声速SiC衬底可抑制体波辐射损耗,但在水平方向上由于能流角(PFA)的存在,使得声波波束偏向,从而提高了损耗。

poYBAGPl5xqAIWAhAAJM_4rgYRc180.jpg

图2 基于LiNbO3-on-SiC衬底的声表面波延迟线的(a)俯视结构示意图和(b)截面结构示意图。声速和机电耦合系数随(c)波长λ和(d)器件面内方向的变化曲线[仿真]。仿真得到的SAW延迟线的(e)俯视和(f)截面振型图。

通过分析声波声速和SH模态机电耦合系数随器件面内方向θ的变化曲线(图2(d)),得到θ=-3°时可同时实现零能流角和较高的机电耦合系数,图2(e)的能流仿真结果印证了上述分析。图2(f)为SAW延迟线的截面仿真振型图,可以看出声波以倏逝波的形态在两种材料的交界面进行传输,且最大振幅点位于SiC中。而由于SiC拥有最高的f*Q值(最低的声子损耗),因此LiNbO3-on-SiC异质衬底是实现高Q值声学延迟线的潜力平台。

图3(a)为所制备的SH模态SAW延迟线的光镜图,所有器件均采用单相单向换能器结构(SPUDT),并进行共轭匹配以滤除端口反射引入的损耗。图3(b-c)为一组不同波长的器件测试结果,平均插损仅为3.7dB。图3(d-e)为一组不同对数的器件测试结果,实现了3-dB带宽从2.7%~11.5%的大范围调控。

pYYBAGPl5y2AR-owAAI9sb6PFYU563.jpg

图3 (a)制备器件的光镜图。不同波长的延迟线的测试(b)插入损耗和(c)回波损耗。不同换能器对数的延迟线的测试(d)插入损耗和(e)回波损耗。

图4(a-b)为所制备的一组不同延迟距离的SAW延迟线测试结果。当间距增加时,器件插损和群延时呈线性增长,拟合得到的声传输损耗仅为0.71dB/mm(或3.66dB/μs)。图4(c)为不同面内方向的延迟线的声传输损耗变化分布,当θ=-3°时可获得最低的传输损耗,印证了仿真的分析。图4(d)为零能流角时的多组器件的Q值结果,器件工作频率范围为1.18~2.1GHz,均呈现出极高的Q值水平(5730~11174),为目前国际报道的最高值。

pYYBAGPl50GAUzRSAAG597C5338392.jpg

图4 一组不同延迟距离的延迟线的测试(a)插损和(b)群延时。(c)不同面内方向延迟线的传输损耗。(d)在最佳传播角上的不同波长器件的Q值。

4

总结与展望

基于高质量的单晶LiNbO3-on-SiC压电异质集成衬底,所制备的GHz声表面波延迟线具有大于10%的相对带宽和大于10,000的Q值(已报道最高值)。因此,LiNbO3-on-SiC基SAW器件在声学射频芯片领域具有极佳的应用前景。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 放大器
    +关注

    关注

    143

    文章

    13612

    浏览量

    213742
  • 耦合器
    +关注

    关注

    8

    文章

    726

    浏览量

    59768
  • SAW
    SAW
    +关注

    关注

    11

    文章

    148

    浏览量

    27202
  • 射频器件
    +关注

    关注

    7

    文章

    128

    浏览量

    25563

原文标题:碳化硅基铌酸锂异质集成实现超高Q值SAW延迟线器件

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用中的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性
    发表于 01-04 12:37

    高速调谐窄线宽激光器

    展示了一种锁定在异质集成-大马士革氮化硅微谐振器模式上的电光可调谐混合
    的头像 发表于 11-20 10:36 243次阅读
    高速调谐<b class='flag-5'>铌</b><b class='flag-5'>酸</b><b class='flag-5'>锂</b>窄线宽激光器

    碳化硅功率器件的工作原理和应用

    碳化硅(SiC)功率器件近年来在电力电子领域取得了显著的关注和发展。相比传统的硅(Si)功率器件碳化硅具有许多独特的优点,使其在高效能、
    的头像 发表于 09-13 11:00 628次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的工作原理和应用

    碳化硅功率器件的优势和应用领域

    在电力电子领域,碳化硅(SiC)功率器件正以其独特的性能和优势,逐步成为行业的新宠。碳化硅作为一种宽禁带半导体材料,具有高击穿电场、高热导率、低介电常数等特点,使得碳化硅功率
    的头像 发表于 09-13 10:56 755次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的优势和应用领域

    碳化硅功率器件的优点和应用

    碳化硅(SiliconCarbide,简称SiC)功率器件是近年来电力电子领域的一项革命性技术。与传统的硅功率器件相比,碳化硅功率
    的头像 发表于 09-11 10:44 578次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的优点和应用

    碳化硅功率器件有哪些优势

    碳化硅(SiC)功率器件是一种基于碳化硅半导体材料的电力电子器件,近年来在功率电子领域迅速崭露头角。与传统的硅(Si)功率器件相比,
    的头像 发表于 09-11 10:25 605次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>有哪些优势

    探究电驱动系统中碳化硅功率器件封装的三大核心技术

    在电动汽车、风力发电等电驱动系统中,碳化硅功率器件以其优异的性能逐渐取代了传统的硅功率器件。然而,要充分发挥碳化硅功率
    的头像 发表于 08-19 09:43 412次阅读
    探究电驱动系统中<b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>封装的三大核心技术

    碳化硅功率器件的优势和分类

    碳化硅(SiC)功率器件是利用碳化硅材料制造的半导体器件,主要用于高频、高温、高压和高功率的电子应用。相比传统的硅(Si)功率
    的头像 发表于 08-07 16:22 618次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的优势和分类

    碳化硅功率器件:高效能源转换的未来

    碳化硅功率器件是一类基于碳化硅材料制造的半导体器件,常见的碳化硅功率器件包括
    的头像 发表于 04-29 12:30 476次阅读

    低损耗薄膜集成器件的研究进展研究

    近年来,得益于薄膜晶圆离子切片技术和低损耗微纳刻蚀工艺的飞速发展,薄膜
    的头像 发表于 04-24 09:11 1544次阅读
    低损耗薄膜<b class='flag-5'>铌</b><b class='flag-5'>酸</b><b class='flag-5'>锂</b>光<b class='flag-5'>集成器件</b>的研究进展研究

    碳化硅器件的类型及应用

    碳化硅是一种广泛用于制造半导体器件的材料,具有比传统硅更高的电子漂移率和热导率。这意味着碳化硅器件能够在更高的温度和电压下工作,同时保持稳定性和效率。
    发表于 04-16 11:54 761次阅读

    基于薄膜的高性能集成光子学研究

    3月25日,Marko Lončar 博士出席光库科技与 HyperLight 联合主办的“薄膜光子学技术与应用”论坛,并发表了题为“基于薄膜
    的头像 发表于 03-27 17:18 930次阅读
    基于薄膜<b class='flag-5'>铌</b><b class='flag-5'>酸</b><b class='flag-5'>锂</b>的高性能<b class='flag-5'>集成</b>光子学研究

    碳化硅压敏电阻 - 氧化锌 MOV

    圆盘的能量吸收范围高达 122,290J,允许圆盘组件具有数十兆焦耳的极高能量吸收额定。 电气参数 EAK碳化硅磁盘应用来自雷电、电感或电容耦合的电源过电压。开关带感性负载的触点。变压器、电机
    发表于 03-08 08:37

    碳化硅功率器件的基本原理、性能优势、应用领域

    碳化硅功率器件主要包括碳化硅二极管(SiC Diode)、碳化硅晶体管(SiC Transistor)等。这些器件通过利用
    发表于 02-29 14:23 1675次阅读

    碳化硅功率器件的特点和应用

    随着全球能源危机和环境问题的日益突出,高效、环保、节能的电力电子技术成为了当今研究的热点。在这一领域,碳化硅(SiC)功率器件凭借其出色的物理性能和电学特性,正在逐步取代传统的硅功率器件
    的头像 发表于 02-22 09:19 806次阅读