0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于 Boosting 框架的主流集成算法介绍(中)

jf_78858299 来源:Datawhale 作者:阿泽 2023-02-17 15:58 次阅读

1.1.4 加权分位数缩略图

事实上, XGBoost 不是简单地按照样本个数进行分位,而是以二阶导数值 作为样本的权重进行划分,如下:

图片

那么问题来了:为什么要用 进行样本加权?

我们知道模型的目标函数为:

我们稍作整理,便可以看出 有对 loss 加权的作用。

其中 与 C 皆为常数。我们可以看到 h_i 就是平方损失函数中样本的权重。

对于样本权值相同的数据集来说,找到候选分位点已经有了解决方案(GK 算法),但是当样本权值不一样时,该如何找到候选分位点呢?(作者给出了一个 Weighted Quantile Sketch 算法,这里将不做介绍。)

1.1.5 稀疏感知算法

在决策树的第一篇文章中我们介绍 CART 树在应对数据缺失时的分裂策略,XGBoost 也给出了其解决方案。

XGBoost 在构建树的节点过程中只考虑非缺失值的数据遍历,而为每个节点增加了一个缺省方向,当样本相应的特征值缺失时,可以被归类到缺省方向上,最优的缺省方向可以从数据中学到。至于如何学到缺省值的分支,其实很简单,分别枚举特征缺省的样本归为左右分支后的增益,选择增益最大的枚举项即为最优缺省方向。

在构建树的过程中需要枚举特征缺失的样本,乍一看该算法的计算量增加了一倍,但其实该算法在构建树的过程中只考虑了特征未缺失的样本遍历,而特征值缺失的样本无需遍历只需直接分配到左右节点,故算法所需遍历的样本量减少,下图可以看到稀疏感知算法比 basic 算法速度块了超过 50 倍。

图片

1.2 工程实现

1.2.1 块结构设计

我们知道,决策树的学习最耗时的一个步骤就是在每次寻找最佳分裂点是都需要对特征的值进行排序。而 XGBoost 在训练之前对根据特征对数据进行了排序,然后保存到块结构中,并在每个块结构中都采用了稀疏矩阵存储格式(Compressed Sparse Columns Format,CSC)进行存储,后面的训练过程中会重复地使用块结构,可以大大减小计算量。

  • 每一个块结构包括一个或多个已经排序好的特征;
  • 缺失特征值将不进行排序;
  • 每个特征会存储指向样本梯度统计值的索引,方便计算一阶导和二阶导数值;

图片

这种块结构存储的特征之间相互独立,方便计算机进行并行计算。在对节点进行分裂时需要选择增益最大的特征作为分裂,这时各个特征的增益计算可以同时进行,这也是 Xgboost 能够实现分布式或者多线程计算的原因。

1.2.2 缓存访问优化算法

块结构的设计可以减少节点分裂时的计算量,但特征值通过索引访问样本梯度统计值的设计会导致访问操作的内存空间不连续,这样会造成缓存命中率低,从而影响到算法的效率。

为了解决缓存命中率低的问题,XGBoost 提出了缓存访问优化算法:为每个线程分配一个连续的缓存区,将需要的梯度信息存放在缓冲区中,这样就是实现了非连续空间到连续空间的转换,提高了算法效率。

此外适当调整块大小,也可以有助于缓存优化。

1.2.3 “核外”块计算

当数据量过大时无法将数据全部加载到内存中,只能先将无法加载到内存中的数据暂存到硬盘中,直到需要时再进行加载计算,而这种操作必然涉及到因内存与硬盘速度不同而造成的资源浪费和性能瓶颈。为了解决这个问题,XGBoost 独立一个线程专门用于从硬盘读入数据,以实现处理数据和读入数据同时进行。

此外,XGBoost 还用了两种方法来降低硬盘读写的开销:

  • 块压缩:对 Block 进行按列压缩,并在读取时进行解压;
  • 块拆分:将每个块存储到不同的磁盘中,从多个磁盘读取可以增加吞吐量。

1.3 优缺点

1.3.1 优点

  1. 精度更高:GBDT 只用到一阶泰勒展开,而 XGBoost 对损失函数进行了二阶泰勒展开。XGBoost 引入二阶导一方面是为了增加精度,另一方面也是为了能够自定义损失函数,二阶泰勒展开可以近似大量损失函数;
  2. 灵活性更强:GBDT 以 CART 作为基分类器,XGBoost 不仅支持 CART 还支持线性分类器,(使用线性分类器的 XGBoost 相当于带 L1 和 L2 正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题))。此外,XGBoost 工具支持自定义损失函数,只需函数支持一阶和二阶求导;
  3. 正则化:XGBoost 在目标函数中加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、叶子节点权重的 L2 范式。正则项降低了模型的方差,使学习出来的模型更加简单,有助于防止过拟合;
  4. Shrinkage(缩减):相当于学习速率。XGBoost 在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间;
  5. 列抽样:XGBoost 借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算;
  6. 缺失值处理:XGBoost 采用的稀疏感知算法极大的加快了节点分裂的速度;
  7. 可以并行化操作:块结构可以很好的支持并行计算。

1.3.2 缺点

  1. 虽然利用预排序和近似算法可以降低寻找最佳分裂点的计算量,但在节点分裂过程中仍需要遍历数据集;
  2. 预排序过程的空间复杂度过高,不仅需要存储特征值,还需要存储特征对应样本的梯度统计值的索引,相当于消耗了两倍的内存。

LightGBM

图片

LightGBM 由微软提出,主要用于解决 GDBT 在海量数据中遇到的问题,以便其可以更好更快地用于工业实践中。

从 LightGBM 名字我们可以看出其是轻量级(Light)的梯度提升机(GBM),其相对 XGBoost 具有训练速度快、内存占用低的特点。下图分别显示了 XGBoost、XGBoost_hist(利用梯度直方图的 XGBoost) 和 LightGBM 三者之间针对不同数据集情况下的内存和训练时间的对比:

图片

那么 LightGBM 到底如何做到更快的训练速度和更低的内存使用的呢?

我们刚刚分析了 XGBoost 的缺点,LightGBM 为了解决这些问题提出了以下几点解决方案:

  1. 单边梯度抽样算法;
  2. 直方图算法;
  3. 互斥特征捆绑算法;
  4. 基于最大深度的 Leaf-wise 的垂直生长算法;
  5. 类别特征最优分割;
  6. 特征并行和数据并行;
  7. 缓存优化。

本节将继续从数学原理和工程实现两个角度介绍 LightGBM。

2.1 数学原理

2.1.1 单边梯度抽样算法

GBDT 算法的梯度大小可以反应样本的权重,梯度越小说明模型拟合的越好,单边梯度抽样算法(Gradient-based One-Side Sampling, GOSS)利用这一信息对样本进行抽样,减少了大量梯度小的样本,在接下来的计算锅中只需关注梯度高的样本,极大的减少了计算量。

GOSS 算法保留了梯度大的样本,并对梯度小的样本进行随机抽样,为了不改变样本的数据分布,在计算增益时为梯度小的样本引入一个常数进行平衡。具体算法如下所示:

图片

我们可以看到 GOSS 事先基于梯度的绝对值对样本进行排序(无需保存排序后结果),然后拿到前 a% 的梯度大的样本,和剩下样本的 b%,在计算增益时,通过乘上 \\frac{1-a}{b} 来放大梯度小的样本的权重。一方面算法将更多的注意力放在训练不足的样本上,另一方面通过乘上权重来防止采样对原始数据分布造成太大的影响。

2.1.2 直方图算法

  1. 直方图算法

直方图算法的基本思想是将连续的特征离散化为 k 个离散特征,同时构造一个宽度为 k 的直方图用于统计信息(含有 k 个 bin)。利用直方图算法我们无需遍历数据,只需要遍历 k 个 bin 即可找到最佳分裂点。

我们知道特征离散化的具有很多优点,如存储方便、运算更快、鲁棒性强、模型更加稳定等等。对于直方图算法来说最直接的有以下两个优点(以 k=256 为例):

  • 内存占用更小:XGBoost 需要用 32 位的浮点数去存储特征值,并用 32 位的整形去存储索引,而 LightGBM 只需要用 8 位去存储直方图,相当于减少了 1/8;
  • 计算代价更小:计算特征分裂增益时,XGBoost 需要遍历一次数据找到最佳分裂点,而 LightGBM 只需要遍历一次 k 次,直接将时间复杂度从 O(#data * #feature) 降低到 O(k * #feature) ,而我们知道 #data >> k 。

虽然将特征离散化后无法找到精确的分割点,可能会对模型的精度产生一定的影响,但较粗的分割也起到了正则化的效果,一定程度上降低了模型的方差。

  1. 直方图加速

在构建叶节点的直方图时,我们还可以通过父节点的直方图与相邻叶节点的直方图相减的方式构建,从而减少了一半的计算量。在实际操作过程中,我们还可以先计算直方图小的叶子节点,然后利用直方图作差来获得直方图大的叶子节点。

图片

  1. 稀疏特征优化

XGBoost 在进行预排序时只考虑非零值进行加速,而 LightGBM 也采用类似策略:只用非零特征构建直方图。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8190

    浏览量

    131239
  • 决策树
    +关注

    关注

    2

    文章

    96

    浏览量

    13462
收藏 人收藏

    评论

    相关推荐

    集成学习和Boosting提升方法

    李航《统计学习方法》——第八章Boosting提升方法【补充集成学习】+习题答案
    发表于 06-05 09:49

    请问怎样去实现自适应波束形成算法

    怎样去实现自适应波束形成算法
    发表于 04-28 06:09

    3D图像生成算法的原理是什么?

    什么是3D图形芯片?3D图像生成算法的原理是什么?
    发表于 06-04 06:29

    五步直线扫描转换生成算法

    直线生成算法,尤其是直线扫描转换算法,是计算机图形学和计算机辅助设计等领域最基本、最重要的算法之一。本文提出了一种改进的直线生成算法——直线扫描转换的五步生
    发表于 06-06 16:24 24次下载

    基于负相关神经网络集成算法及其应用

    传统的神经网络集成中各个自网络间的相关性较大,从而影响集成的泛化能力,本内容提出了基于负相关神经网络集成算法及其应用
    发表于 05-26 15:45 18次下载
    基于负相关神经网络<b class='flag-5'>集成算法</b>及其应用

    基于OFDM系统的时域频域波束形成算法

    文中首先介绍了OFDM-智能天线系统的两种算法:时域波束形成算法和频域波束形成算法。并在此基础上提出了一种新的时-频域波束形成算法,最后将该
    发表于 12-14 14:31 25次下载
    基于OFDM系统的时域频域波束形<b class='flag-5'>成算法</b>

    基于加权co-occurrence矩阵的聚类集成算法

    文中提出了一种基于加权co-occurrence矩阵的聚类集成算法(WCSCE)。该方法首先计算出聚类成员基于属性值的co-occurrence矩阵,然后对聚类成员的质量进行简单评价并赋予权重,生成加权co-occur
    发表于 02-29 14:11 27次下载
    基于加权co-occurrence矩阵的聚类<b class='flag-5'>集成算法</b>

    MIDI合成算法及其FPGA实现

    MIDI合成算法及其FPGA实现.
    发表于 04-16 13:57 44次下载
    MIDI合<b class='flag-5'>成算法</b>及其FPGA实现

    三种SPWM波形生成算法的分析与实现

    本文着重介绍三种SPWM波形生成算法的分析与实现
    发表于 08-24 16:30 12次下载

    基于修正的直觉模糊集成算

    已有的一些直觉模糊集成算子在处理一些特殊直觉模糊数时会出现反直觉现象。首先介绍了两个直觉模糊集成算子和直觉模糊数的比较方法。接着,举例说明了这些集成算子在某些情况下出现的反直觉现象。然
    发表于 11-17 14:36 9次下载

    基于boosting框架的混合秩矩阵分解模型

    基于boosting框架的混合秩矩阵分解模型
    发表于 06-11 14:41 13次下载

    基于Xie-Beni指数的选择性聚类集成算法

    选择性聚类集成是选择一部分精度高、差异性大的基聚类结果进行集成,从而得到更为有效的聚类集成结果。然而,聚类结果的准确性难以客观度量。为此,文中提岀了一种基于 Xie-beni指数的选择性聚类
    发表于 06-17 15:00 8次下载

    基于并行Boosting算法的雷达目标跟踪检测系统

    基于并行Boosting算法的雷达目标跟踪检测系统
    发表于 06-30 14:25 31次下载

    基于 Boosting 框架主流集成算法介绍(上)

    本文是决策树的第三篇,主要介绍基于 Boosting 框架主流集成算法,包括 XGBoost 和 LightGBM。 XGBoost
    的头像 发表于 02-17 15:57 844次阅读
    基于 <b class='flag-5'>Boosting</b> <b class='flag-5'>框架</b>的<b class='flag-5'>主流</b><b class='flag-5'>集成算法</b><b class='flag-5'>介绍</b>(上)

    基于 Boosting 框架主流集成算法介绍(下)

    本文是决策树的第三篇,主要介绍基于 Boosting 框架主流集成算法,包括 XGBoost 和 LightGBM。 XGBoost
    的头像 发表于 02-17 15:58 2444次阅读
    基于 <b class='flag-5'>Boosting</b> <b class='flag-5'>框架</b>的<b class='flag-5'>主流</b><b class='flag-5'>集成算法</b><b class='flag-5'>介绍</b>(下)