0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于多色荧光碳点传感器的纸基微流控芯片

微流控 来源:碳点之光 2023-02-24 09:12 次阅读

抗生素是水产养殖中常用的药物,用于治疗各种细菌疾病,提高饲料利用率,并减少对某些营养素的需求。迄今为止,科学家已经建立了高效液相色谱法、质谱法和酶联免疫吸附测定法等多种抗生素分析技术。然而,尽管这些方法灵敏度高,但样品前处理复杂、仪器昂贵、劳动强度高、人员训练有素,极大地限制了其应用。与纳米材料结合的荧光检测技术具有检测限超低、实时快速检测、检测范围大、成本低等无可比拟的优点,已被广泛应用于抗生素的检测。 近年来,核酸适配体技术已经成为食品掺假和污染物快速检测的领跑者。

与抗体相比,核酸适配体表现出更好的特性,包括更高的亲和力、更高的特异性、更高的稳定性和更容易标记。目前,已有研究人员开发出了一种基于信号放大策略的双目标电化学适配体传感器,用于高灵敏度地同时检测卡那霉素和链霉素。然而,目前还没有纸基微流控适配体传感器与荧光纳米颗粒结合用于抗生素的多重检测。 基于此,江南大学吴世嘉教授团队设计了一种基于多色荧光碳点(CDs)适配体传感器的激光打印纸基微流控芯片(mCD-μPAD适配体传感器),实现了多种抗生素的同时检测。

此外,还设计了一种3D打印的便携式检测盒,可以通过智能手机直观地分析磺胺二甲嘧啶(SMZ)、土霉素(OTC)和氯霉素(CAP)。通过智能手机识别荧光纸张图像的RGB值,可以实现对水产品中多种抗生素的同时可视化检测。文章以“Laser-Printed Paper-Based Microfluidic Chip Based on a Multicolor Fluorescence Carbon Dot Biosensor for Visual Determination of Multiantibiotics in Aquatic Products”为题发表在ACS Sensors期刊上。

首先,研究人员通过水热法合成了多色荧光CDs,然后与抗生素适配体和MoS₂纳米片结合,合成了“荧光关闭”检测纳米探针,如方案1A所示。然后,在自行设计的激光打印微流控纸基芯片的三个检测区重复滴加三个检测纳米探针溶液,制成方案1B中的mCD-μPAD适配体传感器。检测过程如方案1C所示。

在没有靶点的情况下,CDs通过π-π堆积作用与MoS₂纳米片形成的CDs-apt导致mCD-μPAD上的荧光猝灭,这可以促进荧光共振能量转移(FRET)过程的形成。然而,当样品溶液被mCD-μPAD适配体传感器吸附时,溶液中的抗生素会在滤纸的毛细作用下迁移到检测区。然后,它们各自的适配体特异性地识别它们,并形成伴随构象变化的适配体/靶点复合体。

在这种情况下,CDs和MoS₂之间的距离变大,阻碍了能量的传递。通过便携式检测设备和可用的智能手机拍摄检测区域中的荧光颜色变化,可以通过安装的颜色识别应用程序提取捕获的荧光图像或实时图像的RGB通道值,并将其转换为灰度值。图像的灰度值与抗生素的浓度成正比。

96fad43a-b3df-11ed-bfe3-dac502259ad0.jpg

方案1 mCD-μPAD适配体传感器和便携式智能手机检测仪同时检测多种抗生素

制备的三种CDs为分散均匀的球状颗粒,平均粒径分别为3.49 nm ± 0.63 nm、4.74 nm ± 0.65 nm和5.03 nm ± 0.69 nm(图1a-1c)。三种CDs的红外光谱相似,都具有C-O-C(1195/cm、1166/cm和1145/cm)、C-N(1417/cm、1394/cm和1400/cm)、C=O(1720/cm、1627/cm和1621 /cm)和O-H/N-H(3502/cm、3413/cm和3437/cm)伸缩振动和N-H(779/cm、827/cm和912/cm)弯曲振动(图1d-1f)。用X射线光电子能谱对三种CDs的表面元素分析表明,多色CDs含有原子含量不同的C(284.8 eV)、N(400 eV)和O(531 eV)(图1g−1i)。

970ed750-b3df-11ed-bfe3-dac502259ad0.jpg

图1 (a)rCDs、(b)gCDs和(c)bCDs的TEM图像和粒径分布直方图;(d)rCDs、(e)gCDs和(f)bCDs的FT-IR光谱;(g)rCDs、(h)gCDs和(i)bCDs的XPS谱 用UV-Vis吸收光谱、荧光激发和发射光谱研究了多色荧光CDs的光学性质(图2a-2c)。三种CDs在530 nm、360 nm和370 nm处的吸收带分别与614 nm、490 nm和470 nm处的发射的激发光谱重叠。

rCDs在530 nm吸收峰归属于C=N键,gCDs和bCDs的360 nm和370 nm吸收峰归属于碳核的n→π*跃迁。在激发波长为518 nm、362 nm和374 nm时,三种CDs的最大发射波长分别为614 nm、493 nm和439 nm。

972ee054-b3df-11ed-bfe3-dac502259ad0.jpg

图2 (a)rCDs、(b)gCDs和(c)bCDs的荧光和吸收光谱

通过ζ电位表征了适配体与CDs的结合(图3a-3c)。rCDs、gCDs和bCDs的ζ电势分别在-2.33 mV ~ -11.7 mV、-8.81 mV ~ -12.2 mV和-8.86 mV ~ -14.7 mV之间变化,这是由于适配体磷酸骨架上丰富的负电荷。如图3d-3f所示,在CDs-apt中添加MoS₂复合材料显著猝灭了荧光强度(c线),在CDs直接掺入MoS₂后,发光强度仅轻微猝灭(b线)。

此外,随着靶点的加入,复合体系(CDs-apt-MoS₂)的荧光强度显著恢复(d线)。此外,还验证了在μPAD上安装检测探针的可行性。μPAD在365 nm激发波长下的检测区的荧光强度按a、b、d、c的顺序逐渐减小,这与溶液中的结果一致。

9741b832-b3df-11ed-bfe3-dac502259ad0.jpg

图3 (a)rCDs和rCDs-atp1、(b)gCDs和gCDs-atp2、以及(c)bCDs和bCDs-atp3的ζ电势;(d)rCDs-atp1-MoS₂、(e)gCDs-atp2-MoS₂和(f)bCDs-atp3-MoS₂纳米探针在溶液中检测抗生素的可行性

如图4a所示,整个μPAD是半径为30 mm的扇区。三种不同形状的检测区域和三个圆形缓冲区通过三个微通道与亲水尖端相连。使用缓冲区,以避免由于检测过程中液体流动速度过快而导致检测探头堆积在检测区域的上部。图4b、4c显示了白天和365 nm激发光打印的多色荧光碳点附着在μPAD的照片。

通过扫描电子显微镜技术,可以认为检测区浸入了CDs -apt -MoS₂纳米探针。图4d、4e显示了不同尺度下μPAD的空白检测区,其中只能观察到滤纸的纤维组织。在图4f中,可以观察到它们附着在纤维素过滤器的表面,并在将纳米探针滴到检测区后在一定程度上聚集在一起。

为了获得更好的检测性能,对MoS₂的负载浓度和靶点孵育时间进行了优化。从图4g-4i中可以看出,随着MoS₂在纳米探针中浓度的增加,相应浓度的μPAD的灰度值和荧光图像都逐渐下降,红色和绿色探针稳定在0.25 mg/mL,蓝色探针稳定在0.30 mg/mL。

因此,rCDs和gCDs探针的最佳浓度为0.25 mg/mL MoS₂,bCDs探针的最佳浓度为0.30 mg/mL MoS₂。此外,通过确定抗生素浓度(100 ng/mL)来优化目标孵育时间。结果表明,所有颜色的灰度值随着时间的推移而逐渐增加,并在15分钟时趋于稳定(图4j-4i)。因此,15 min为最佳孵化时间。

9761230c-b3df-11ed-bfe3-dac502259ad0.jpg

图4 (a)μPAD的示意图;μPAD在日光下(b)和在365 nm紫外光下附着多色荧光碳点的照片;在(d)100 μm和(e)10 μm处添加检测探针之前的检测区的扫描电子显微镜图像;(f)在10 μm处添加检测探针之后的检测区的扫描电子显微镜图像;(g)rCDs检测探针、(h)gCDs检测探针和(i)bCDs检测探针的MoS₂浓度的优化;(j)rCDs检测探针、(k)gCDs检测探针和(i)bCDs检测探针的孵育时间的优化

通过便携设备平台和智能手机同时检测SMZ、OTC和CAP。此外,为了使mCD-μPAD适配体传感器可用于抗生素的现场定量,并提供稳定的分析环境,设计了一种3D打印的便携式检测装置。该设备的组成和结构的照片如图5a、5b所示。它由一个由电池供电的365 nm紫外光和一个带有高质量互补金属氧化物半导体相机的智能手机组成。检测过程如图5c所示。检测后,将μPAD放入装置托盘,在365 nm激发光源下激发。智能手机被放置在盒子的顶部,通过观察孔捕捉到平板的荧光信号。

在最佳条件下,用mCD-μPAD适配体传感器对SMZ、OTC和CAP进行可视化检测。如图5d-5f所示,随着标准样品中SMZ、OTC和CAP浓度的增加,rCDs、gCDs和bCDs的荧光强度逐渐恢复。然后,通过颜色识别软件提取荧光图像的RGB值,并将其转换为灰度值,通过公式进行计算,相应的检出限分别为0.47 ng/mL、0.48 ng/mL和0.34 ng/mL。

979a0f82-b3df-11ed-bfe3-dac502259ad0.jpg

图5 便携式检测装置的(a)制备、(b)组成和(c)使用的示意图;mCD-μPAD适配体传感器的荧光图像以及(d)红、(e)绿和(f)蓝检测区域的Δ灰度值与对数的SMZ、OTC和CAP浓度之间的校准曲线 用该方法检测了水产品中可能存在的磺胺嘧啶(SDZ)、磺胺二甲氧嘧啶(SMS)、四环素(TC)、恩诺沙星(ENR)和红霉素(ERY)等几种常见抗生素。其中,SDZ和SMS是SMZ的结构类似物,TC是OTC的结构类似物。如图6所示,这些抗生素仅引起较小的灰度值变化。相比之下,SMZ、OTC和CAP可导致相应检测区域的显著增加。

97b67370-b3df-11ed-bfe3-dac502259ad0.jpg

图6 mCD-μPAD适配体传感器的特异性和交叉反应性

综上所述,该研究利用多色荧光发射N-CDs和MoS₂纳米片作为FRET供体−受体对,成功构建了一种多色荧光纳米探针纸基微流控芯片,可同时监测3种常用抗生素。使用3D打印便携设备和现有的智能手机,可以通过安装的颜色识别应用程序实现荧光图像的快速捕获和RGB通道值的即时分析。

通过改变相应的适配体,μPAD可应用于其他抗生素的检测。在进一步的研究中,将努力分散在微型光学配件的设计上,以减轻检测系统的重量和体积,并开发智能手机应用程序,整合图像处理和数据分析,提高性能。总体而言,该纸基传感器具有试剂消耗低、检测成本低、制作简单、灵敏度高、效率高等优点,为食品安全与控制的同步监测提供了一种很有前途的策略。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2552

    文章

    51246

    浏览量

    754850
  • RGB
    RGB
    +关注

    关注

    4

    文章

    799

    浏览量

    58582
  • 微流控芯片
    +关注

    关注

    13

    文章

    276

    浏览量

    18856
  • FRET
    +关注

    关注

    0

    文章

    4

    浏览量

    4536

原文标题:基于多色荧光碳点传感器的纸基微流控芯片,用于多种抗生素可视化检测

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    玻璃芯片的特点

    得它们非常适合于需要光学观察和分析的应用,如荧光显微镜观察、激光诱导荧光(LIF)检测等。 2. 优异的耐高压性 玻璃芯片能够承受较高
    的头像 发表于 12-13 15:26 155次阅读

    常用的芯片类型

    芯片是一种集成了多种尺度功能单元的微型设备,它能够在微米级别上精确操控流体,广泛应用于生物医学、化学分析、生物传感等领域。以下是几种
    的头像 发表于 11-21 15:13 504次阅读

    中国开发出基于可编程DNA水凝胶的比距传感器

    比距传感器是围绕基材料的功能化设计的,根据待测目标触发反应产生的可观测距离信号进行定性或定量分析,具有读数直观且操作简便等优点,是新兴的即时检测(POCT)装置。
    的头像 发表于 11-18 09:46 252次阅读
    中国开发出基于可编程DNA水凝胶的<b class='flag-5'>纸</b><b class='flag-5'>基</b>比距<b class='flag-5'>传感器</b>

    S型芯片的优势

    芯片的基本概念 芯片,也被称为芯片实验室
    的头像 发表于 11-01 14:30 310次阅读

    控阵列芯片和普通芯片的区别

    控阵列芯片与普通芯片在设计与应用上存在显著差异 设计原理:控阵列
    的头像 发表于 10-30 15:10 259次阅读

    2024年传感器品牌排行榜前十名最新

    关于2024年传感器品牌排行榜前十名最新,由于不同时间、不同评选机构和不同评价标准可能会产生不同的排名结果,因此很难给出一个绝对准确且固定的排名。不过,我可以根据当前市场上较为知名和受欢迎的
    的头像 发表于 09-09 14:45 1036次阅读
    2024年<b class='flag-5'>色</b>标<b class='flag-5'>传感器</b>品牌排行榜前十名最新

    常用遥感传感器中成像的传感器是什么

    常用遥感传感器中成像的传感器主要包括以下几类: 一、光学成像传感器 波段扫描仪 :波段扫描仪是一种重要的光学成像
    的头像 发表于 09-04 14:25 932次阅读

    传感器:工作原理与应用

    来源:传感器专家网 传感器以其高精度、高灵敏度和广泛的应用范围,成为众多行业不可或缺的测量工具。本文将深入探讨传感器的工作原理、多样
    的头像 发表于 08-27 09:17 471次阅读

    玻璃芯片前景分析

    玻璃芯片是一种由玻璃制成的小型装置,用于在尺度水平上操纵和分析流体。 它由在玻璃基板上蚀刻或制造的通道和微结构网络组成。
    的头像 发表于 07-21 15:05 519次阅读
    玻璃<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>前景分析

    基于一种AI辅助可穿戴控比色传感器系统

    存在的挑战限制了这项技术的实际应用。 据麦姆斯咨询报道,为了克服这些挑战,来自中国石油大学(华东)的研究人员开发了一种人工智能(AI)辅助的可穿戴控比色传感器系统(AI-WMCS),用于快速、无创、同步检测人类泪液中
    的头像 发表于 06-29 10:57 1.1w次阅读
    基于一种AI辅助可穿戴<b class='flag-5'>微</b><b class='flag-5'>流</b>控比色<b class='flag-5'>传感器</b>系统

    武汉大学:研究控电化学集成传感器,快速、高效分离和灵敏检测致病菌

    作者提出了一种流体电化学集成传感器(MEIS)来有效地分离和检测白色念珠菌。分别制备了三维大孔PDMS支架和金纳米管包覆PDMS电极(Au-NT电极),并将其组装在单通道芯片中,分
    的头像 发表于 06-17 17:29 760次阅读
    武汉大学:研究<b class='flag-5'>微</b><b class='flag-5'>流</b>控电化学集成<b class='flag-5'>传感器</b>,快速、高效分离和灵敏检测致病菌

    纳芯发布全新NSM2311集成式电流传感器芯片

    近日,纳芯发布了全新的NSM2311集成式电流传感器芯片,这款芯片以其卓越的性能和全面的集成设计,在电流传感器市场引起了广泛关注。
    的头像 发表于 05-24 10:33 1112次阅读

    中国科学院在薄膜荧光传感器研究方面取得进展,美国为F-22升级新传感器

    传感新品 【中国科学院上海系统与信息技术研究所:在薄膜荧光传感器研究方面取得进展】 近日,中国科学院上海系统与信息技术研究所研究人员在薄
    的头像 发表于 04-26 08:39 638次阅读
    中国科学院在薄膜<b class='flag-5'>荧光</b><b class='flag-5'>传感器</b>研究方面取得进展,美国为F-22升级新<b class='flag-5'>传感器</b>

    感科技携自研的光学传感器芯片及产品亮相深圳传感器展览会

    4月14日-16日,感科技携自主研发的光学传感器芯片及应用产品展示套件参展深圳传感器展览会,此次参展不仅是对感科技光学
    的头像 发表于 04-19 09:10 651次阅读

    芯片技术的特点 芯片与生物芯片的区别

    比如对于控免疫分析芯片系统,抗体的固定、对通道表面的封闭,显著影响免疫分析的灵敏度,是该类芯片需要重点解决的问题。
    的头像 发表于 03-15 10:36 3024次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>技术的特点 <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>与生物<b class='flag-5'>芯片</b>的区别