0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

直接调控Li+溶剂化结构的全氟化碳酸酯类电解液

锂电联盟会长 来源:能源学人 2023-02-24 09:16 次阅读

【研究背景】

锂金属阳极作为锂离子电池中石墨阳极(理论容量为372 mAh g-1)的理想替代品,正经历着飞速的发展。锂金属具有低的电极电位和超高的理论比容量(3860 mAh g-1)等优点,有望打破锂离子电池中电流的束缚,满足日益增长的高能量密度电源的需求。

然而,高活性锂金属不可避免地与电解液发生副反应,并形成脆弱的固体电解质界面相(SEI),导致锂反复的电镀/剥离过程中,锂金属阳极发生不可控的锂枝晶生长,电解液不断消耗,锂阳极体积膨胀。这些问题影响了锂金属电池的库伦效率和循环寿命,进一步影响锂金属电池的实际应用。

针对上述问题,业界提出电解液工程,其主要目标是开发具有高浓度、粘度、不可燃性以及氧化稳定性等优点的新型电解液体系。在电解液工程中,必须优先考虑的锂离子的溶剂化结构,其主要来自于偶极子-偶极子、阳离子-偶极子和阳离子-阴离子的竞争性相互作用,这与锂金属电池的阳极/阴极界面质量、锂离子通量和循环稳定性密切相关。

目前,主流的策略是通过引入更多阴离子来降低锂离子溶剂化结构中的溶剂/阴离子比,从而削弱了Li+-偶极子相互作用。然而,添加更多的阴离子意味着盐的浓度或种类的增加,这或多或少会在成本、粘度和界面化学方面产生一些负面影响。因此,利用理论计算方法寻找合适的溶剂分子,设计电解液体系来直接调控Li+溶剂化结构是很有意义的课题。

【工作介绍】

近日,武汉大学赵焱教授课题组利用DFT方法计算了氟化溶剂的HOMO/LUMO能量,筛选了具有高HOMO/LUMO能量的氟化碳酸酯溶剂:乙基三氟乙基碳酸酯(ETFEC)和氟代碳酸乙烯酯(FEC),并与常规碳酸酯溶剂(EC和DEC)选择性组合配置不同氟化程度的电解液。

通过分子动力学模拟发现,全氟化碳酸酯类电解液可以直接调控Li+溶剂化结构,降低溶剂与Li+的配位数,增加阴极与Li+的配位数。而且,在全氟化电解液中,快速Li+脱溶诱导了稳定且富含LiF界面相生成,有效抑制了锂枝晶的生长。因此Li||Cu非对称电池获得平均98.3%的高库伦效率和优异的循环稳定性。

Li||NCM811电池在高电压下保持了72.3%的初始容量和99.8%的平均库伦效率。这项工作为构建高性能锂金属电池的理想界面化学提供了一种Li+溶剂化结构直接调控的策略。该文章发表在国际权威期刊Energy Storage Materials上。博士生张文娜、杨桐为本文第一作者。

【内容表述】

1. 电解液的设计和溶剂化结构

8e2d3ff0-b3df-11ed-bfe3-dac502259ad0.png

图1 (a)溶剂结构和计算的HOMO/LUMO能量;(b)不同电解液在不锈钢电极上测试的CVs;(c)使用不同电解液组装的Li||Cu电池测试的LSV曲线;(d)DFT计算得到的Li+与溶剂的结合能;(e-g)不同电解液的分子动力学模拟得到的Li+径向分布函数和代表性溶剂化结构(插图);(h)三种电解液、溶剂和LiPF6的FTIR光谱。

采用DFT方法计算氟化碳酸盐基溶剂(FEC和ETFEC)和常规碳酸盐基溶剂(EC和DEC)的HOMO/LUMO能量。结果显示溶剂被氟化后,其HOMO/LUMO能量值明显降低,其HOMO-LUMO gap变大,表明氟化溶剂具有良好的抗氧化性且易被还原,形成高质量的SEI。根据氟化程度的不同配制得到三种电解液:非氟(ED)、半氟(FD)和全氟化电解液(FE)。

使用循环伏安法探究电解液体系中氟化程度对氧化稳定性的影响,结果显示全氟化电解液的氧化行为被明显抑制,进一步表明氟化溶剂组成的电解液可以承受高压电极。通过对三种电解液进行分子动力学模拟进一步了解不同氟化水平电解液中的Li+溶剂化结构。结果显示从ED到FE,Li+与溶剂分子的配位数从3.75降至3.02,表明,溶剂氟化有效提高了Li+的快速脱溶能力。

另外,我们也发现,ETFEC引入FE中降低了Li+与溶剂的整体配位,但增强了PF6-和FEC与Li+的配位,从而优化了Li+的溶剂化环境,为富含LiF的SEI的形成提供了有利的条件。一方面,由于Li+溶剂配位整体降低,更多PF6-参与溶剂化结构,有利于驱动电极表面阴离子衍生界面化学,为在FE中循环生成富含LiF的SEI提供更多的F源;另一方面,与FD相比,在FE中,FEC与Li+的配位能力相对增强,由于还原电位的提高,可以进一步促进其分解,从而产生更多的LiF。

2. 锂电镀/剥离行为研究

通过组装Li||Cu电池,评价了不同电解液对锂电镀/剥离库伦效率和长循环稳定性的差异。无论电流密度为0.5 mA cm-2还是1 mA cm-2,使用该全氟化电解液(FE)组装的电池均表现出优异的循环稳定性。进一步利用组装的Li||Li对称电池说明FE在循环方面的优势。基于FE组装的电池可以稳定循环900 h以上,且始终保持较低的极化电压。根据上述实验结果,可以说明全氟化电解液极大地优化了Li+-偶极子结构,Li+脱溶速率快,从而在电镀/剥离过程中生成了高质量,低传输阻力的SEI。

8e56b632-b3df-11ed-bfe3-dac502259ad0.png

图2 (a-b)不同电流密度下Li电镀/剥离的库伦效率展示;(c-f)Li||Li对称电池的长循环稳定性。

3. 锂阳极界面分析

通过对不同电解液中循环后的锂沉积表面表征,更进一步阐明Li+-溶剂相互作用对SEI 层中锂沉积形态的影响。明显可以看出在FE中形成的SEI均匀致密,且基本无枝晶出现。从其截面厚度也可以看出,在FE中锂沉积的厚度(26.23 μm)更接近理论值(24 μm)。通过对循环30圈后的锂阳极表面形貌表征,可以进一步验证锂沉积行为与电化学性能之间的关系。

与ED和FD中循环后的锂阳极表面相比,在FE中获得的锂阳极表面更加致密均匀,这也表明FEC和ETFEC的组合能够形成稳定的氟化SEI,并有效限制了锂枝晶的生成和副反应的发生,从而有助于高的库伦效率和稳定的循环性能。

8e69da82-b3df-11ed-bfe3-dac502259ad0.png

图3 使用不同电解液组装电池循环后的锂沉积表面的SEM(a-c)和截面形貌(d-f);(g-i)在相应电解液中循环后锂沉积形成的不同SEI形态示意图;(j-l)在不同电解液中循环30圈后的锂阳极的SEM图像。

4. 全电池性能测试

8e84bbd6-b3df-11ed-bfe3-dac502259ad0.png

图4 (a)Li||NCM811电池在三种电解液中循环稳定性对比,电压区间为3.0-4.3 V;(b-d)Li||NCM811电池在相应电解液中循环的充放电曲线,电压区间为3.0-4.3 V;(e)Li||NCM811电池在三种电解液中循环稳定性对比,电压区间为3.0-4.6 V;(f)Li||NCM811电池的倍率性能,电压区间为3.0-4.6 V。

为了进一步证明FE可以实现具有商业用途的高能量密度锂金属电池,有必要评估三种电解液与NCM阴极(NCM811)的相容性。本研究采用薄的锂箔(50 μm)和面载量为1.5 mAh cm-2的NCM811阴极组装电池,分别在3.-4.3 V和3.0-4.6 V的电压区间下进行循环稳定性测试。

结果显示,FE电解液在循环200圈后保持了初始容量的89.3%,远高于ED和FD电解液,而且继续稳定循环到500圈,保持初始容量的73.5%,其平均库伦效率几乎达到100%,在整个循环过程中保持相对较低的电压极化。该结果进一步强调了全氟化电解液能够在电极表面生成稳定的SEI并实现优异的循环稳定性。在高的截止电压下(4.6 V),氟化程度的增加仍然使电解液保持优异的循环稳定性。

【总结】

本研究工作提出了一种由LiPF6、FEC和ETFEC组成的全氟化电解液,可以直接调控Li+的溶剂化结构,保证了Li+的快速溶剂化,从而获得了一系列优于非氟化和半氟化电解液的优点。比如富含LiF的界面相形成、低的锂电镀/剥离过电位、高的循环稳定性以及高的库伦效率等。而且,其Li||NCM811电池在高压下仍然表现出优异的循环性能。本工作所提出的策略将为直接优化Li+溶剂化环境和实现高质量的界面化学提供了一个有前景的方向。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3215

    浏览量

    77545
  • 电解液
    +关注

    关注

    10

    文章

    839

    浏览量

    23062
  • DFT
    DFT
    +关注

    关注

    2

    文章

    224

    浏览量

    22679
  • FEC
    FEC
    +关注

    关注

    0

    文章

    40

    浏览量

    13676
  • 锂金属电池
    +关注

    关注

    0

    文章

    133

    浏览量

    4298

原文标题:高压锂金属电池——直接调控Li+溶剂化结构的全氟化碳酸酯类电解液

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    镍氢电池的电解液是什么

    镍氢电池是一种常见的二次电池,具有较高的能量密度和良好的循环性能。其电解液是电池中的关键组成部分,对电池的性能和寿命有重要影响。 一、镍氢电池简介 镍氢电池(Ni-MH Battery)是一种碱性
    的头像 发表于 07-19 15:35 621次阅读

    浸没式液冷散热氟化新产品 DAISAVE

    什么是氟化氟化一种化学溶剂,是一种无色透明氟具有良好的化学惰性、电气绝缘性能、热传导性和
    的头像 发表于 07-06 08:10 368次阅读
    浸没式液冷散热<b class='flag-5'>氟化</b><b class='flag-5'>液</b>新产品 DAISAVE

    新宙邦拟在美国投建10万吨/年电解液项目

    近日,新宙邦发布公告,宣布了一项重要的海外扩产计划。为满足北美地区客户对碳酸溶剂及锂离子电池电解液日益增长的需求,公司计划在路易斯安那州的Ascension Parish投建一个大型生产项目。
    的头像 发表于 05-24 11:29 597次阅读

    新宙邦美国路易斯安那州碳酸溶剂和锂离子电池电解液项目启动

     5月22日,广东新宙邦化学股份有限公司宣布,为了满足北美市场的用电需求,将在路易斯安那州Asition Parish投资3.5亿美元新建一个年产量达20万吨的碳酸溶剂以及10万吨的锂离子电池电解液生产基地
    的头像 发表于 05-23 09:43 380次阅读

    最新Nature Energy开发新型稀释剂助推锂金属电池实用

    众所知周,通过调控电解液来稳定固体电解质间相(SEI),对于延长锂金属电池循环寿命至关重要。
    的头像 发表于 05-07 09:10 724次阅读
    最新Nature Energy开发新型稀释剂助推锂金属电池实用<b class='flag-5'>化</b>!

    位传感器监测铅酸电池电解液

    化学反应,电解液位会略微下降,如果位过低,不仅会影响电池的正常工作,还可能会对电池造成损坏。 铅酸电池电解液位指的是
    的头像 发表于 04-08 15:10 611次阅读
    <b class='flag-5'>液</b>位传感器监测铅酸电池<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位

    非质子型弱配位电解液实现无腐蚀超薄锌金属电池

    锌金属电池以高容量、低成本、环保等特点受到广泛关注。但由于金属锌在传统水系电解液中热力学不稳定,锌金属电池的实际应用仍面临挑战。
    的头像 发表于 04-02 09:05 451次阅读
    非质子型弱配位<b class='flag-5'>电解液</b>实现无腐蚀超薄锌金属电池

    溶剂少层碳界面实现硬碳负极的高首效和稳定循环

    钠离子电池碳基负极面临着首次库伦效率低和循环稳定性差的问题,目前主流的解决方案是通过调节电解液溶剂结构,来调节固体电解质界面(SEI),
    的头像 发表于 01-26 09:21 1405次阅读
    弱<b class='flag-5'>溶剂</b><b class='flag-5'>化</b>少层碳界面实现硬碳负极的高首效和稳定循环

    锂离子电池生产过程中湿度控制的重要性

    锂离子电池在生产过程中对湿度要求非常高,主要是因为水分失控或粗控制,会对电解液产生不良影响。电解液是电池中离子传输的载体,由锂盐和有机溶剂组成,是锂离子电池获得高电压、高比能等优点的
    的头像 发表于 01-25 17:10 1175次阅读
    锂离子电池生产过程中湿度控制的重要性

    锂电池电解液如何影响电池质量?锂电池电解液成分优势是什么?

    锂电池电解液如何影响电池质量?锂电池电解液成分优势是什么? 锂电池电解液是锂离子电池的关键组成部分之一,它直接影响电池的性能和质量。 一、锂电池电解
    的头像 发表于 01-11 14:09 1049次阅读

    永太科技与宁德时代签订电解液采购合同

    根据这份补充协议,宁德时代在2024年及2025年需分别向永太科技采购至少10万吨不同型号的电解液。补充协议实施之后,原协议中原材价格对比标准失效,而原材料价格则需依据市场实际情况双方协商制定。
    的头像 发表于 01-10 09:27 538次阅读

    无机锌盐中非质子性极性溶剂适用原则的深入分析!

    关键的添加剂-电解液相互作用:磷酸三甲酯作为一种绿色、有效、环保的添加剂在水系电池、电容器中被广泛应用于溶剂结构调控
    的头像 发表于 12-27 09:15 1509次阅读
    无机锌盐中非质子性极性<b class='flag-5'>溶剂</b>适用原则的深入分析!

    锂离子电池电解液有什么作用?

           锂离子电池作为一种便携式储能设备,广泛用于手机,笔记本电脑,相机,电动自行车,电动汽车等领域。其中锂电池电解液是一个不容忽视的方面。毕竟,占电池成本15%的电解质在电池能量密度
    的头像 发表于 12-26 17:05 834次阅读

    阴离子-溶剂相互作用的见解

    近日,马里兰大学的王春生教授,Jijian Xu与香港城市大学的Anh T. Ngo等人在双(3-氟丙基)醚(BFPE)的弱Li+阳离子溶剂化溶剂中系统地检测了双(三氟甲磺酰)亚胺(TFSI)、双(氟磺酰)亚胺(FSI)和衍生的
    的头像 发表于 12-04 09:19 1272次阅读
    阴离子-<b class='flag-5'>溶剂</b>相互作用的见解

    4.7V高稳定锂离子电池用HBCHHI添加剂辅助商用酯电解液

    传统碳酸盐基电解质的正极LiNi0.8Co0.1Mn0.1O2 (NCM811)的高反应性加剧了结构退化,导致循环寿命有限
    的头像 发表于 11-27 10:43 929次阅读
    4.7V高稳定锂离子电池用HBCHHI添加剂辅助商用酯<b class='flag-5'>电解液</b>