0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于强化学习的生物分子手性传感器

微流控 来源:光电期刊 2023-03-09 09:19 次阅读

手性是自然界物体最基本的属性之一,在诸多领域中具有重要的作用。尤其在医疗生物化学领域中,检测与区别同一组分相反手性的对映异构体是一个非常重要的课题。自然界中的大部分生物分子的手性光学响应非常微弱,且其波段常常位于紫外光波段,因此直接检测分子的光学手性非常困难。

由于表面等离激元具有放大光学手性信号的能力,所以基于表面等离激元的手性探测被认为是未来生物分子检测的有力手段。该方法的关键在于针对目标生物分子寻找合适的金属纳米结构,使得二者的耦合信号尽量显著。然而,表面等离激元与生物分子的耦合机制非常复杂,难以准确地进行定量分析,这极大地增加了金属纳米结构的设计难度。

近年来,人工智能的高速发展催生了一批卓越的自学习算法,强化学习正是其中之一。它通过与环境进行交互获得的结果指导行为的改变,类似于一个生物体不断适应环境的过程。机器学习的引入也大幅推动了微纳光子学的发展,在设计光子晶体、超材料和集成硅光子器件等领域都取得了令人瞩目的成就。

近期,北京大学物理学院方哲宇教授课题组尝试利用强化学习方法设计了生物分子手性传感器件,实现了对葡萄糖对映异构体的高灵敏手性动态监测(图1)。该探测技术的基本原理是利用金属表面等离激元与生物手性分子的耦合效应,这一耦合会导致加入生物分子前后金属纳米结构的远场手性光谱发生变化,通过捕捉光谱前后的变化,就可以实现对生物手性分子的传感。

9a92b326-bdba-11ed-bfe3-dac502259ad0.png

图1 生物分子的手性传感

该工作采用强化学习来实现高手性纳米结构的设计,在利用神经网络模型引导探索参数空间的同时,不断更新神经网络模型的参数,其工作流程如图2所示。相比于传统的有监督学习,强化学习大幅减少了模拟计算消耗的计算资源。在经典的有监督学习中,首先需要进行大量的电磁模拟来获得各种构型金属纳米结构的光学响应,再根据神经网络的预测寻找优秀的金属纳米结构。

而神经网络的准确预测需要所有构型的训练数据,这其中包含了大量弱手性结构,浪费了大量的计算资源和计算时间。而强化学习模型选择参数探索与模型训练同时进行,经过数轮探索后可以将探索范围基本锁定在高手性结构的范围内,从而大幅减少模拟计算的次数。整个设计过程充分实现了智能化,对未来微纳光子学器件的设计有极高的引导意义和参加价值。

9ab92cf4-bdba-11ed-bfe3-dac502259ad0.jpg

图2 基于强化学习的算法框架

该工作将金属纳米结构制备在微流控芯片底部,通过实时观测光谱的变化来实现对通入微流控芯片的样品溶液的手性检测。相比于传统生物化学方法,这一探测手段具有极高的便捷性,不需要化学反应就可以实现手性甄别,样品需求量低且没有破坏性,具有优秀的应用价值,对各种生物大分子都具有实现高灵敏手性探测的潜力。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2537

    文章

    48886

    浏览量

    743694
  • 神经网络
    +关注

    关注

    42

    文章

    4640

    浏览量

    99479
  • 机器学习
    +关注

    关注

    66

    文章

    8209

    浏览量

    131251
  • 硅光子芯片
    +关注

    关注

    0

    文章

    15

    浏览量

    1745

原文标题:基于强化学习的生物分子手性传感器,实现葡萄糖对映异构体的高灵敏手性动态监测

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    通过强化学习策略进行特征选择

    更快更好地学习。我们的想法是找到最优数量的特征和最有意义的特征。在本文中,我们将介绍并实现一种新的通过强化学习策略的特征选择。我们先讨论强化学习,尤其是马尔可夫决策
    的头像 发表于 06-05 08:27 137次阅读
    通过<b class='flag-5'>强化学习</b>策略进行特征选择

    化学生物传感器生物检测领域的显著优势

    的优势。 首先,电化学生物传感器以其高灵敏度脱颖而出。 在生物检测中,往往需要检测的生物分子浓度极低,传统的检测方法可能难以准确识别。而电化学生物传
    的头像 发表于 04-29 10:00 226次阅读
    电<b class='flag-5'>化学生物传感器</b>在<b class='flag-5'>生物</b>检测领域的显著优势

    三郡科技:电化学生物传感器电极与生物芯片的异同

    化学生物传感器电极 与 生物芯片 作为生物技术领域中的两大重要工具,为现代生物分析和医学诊断提供了强有力的支持。虽然它们都涉及生物学和电子
    的头像 发表于 04-28 14:08 307次阅读
    三郡科技:电<b class='flag-5'>化学生物传感器</b>电极与<b class='flag-5'>生物</b>芯片的异同

    便携快速检测的电化学生物传感器:颠覆性变革生物检测方式

    的需求。因此,开发一种便携、快速、准确的生物检测方法成为当前研究的热点。近年来,电化学生物传感器以其独特的优势在生物检测领域崭露头角,有望颠覆传统的生物检测方式。 一、电
    的头像 发表于 04-26 17:14 742次阅读

    生物医学领域的传感器有哪些?

    对于传统被测量而言,敏感膜就相当于传感器与被测对象的界面。在传统的传感器前面附加一层根据不同需要而特制的敏感膜,即可表示化学传感器生物传感器
    发表于 03-29 10:49 432次阅读
    <b class='flag-5'>生物</b>医学领域的<b class='flag-5'>传感器</b>有哪些?

    ​科普|生物传感器

    01原理 首先生物传感器的组成包含抗体、抗原、蛋白质、DNA或者酶等生物活性材料,当待测物质进入传感器后,这些生物活性材料与待测物进行分子
    的头像 发表于 03-21 17:17 441次阅读

    三郡科技:如何选择电化学生物传感器电极

    电极生物传感器
    jf_51582067
    发布于 :2024年01月05日 14:32:20

    化学生物传感器:中国科研的新宠儿!

    嘿,小伙伴们!你们有没有听说过电化学生物传感器?这是一种结合了电化学生物技术的前沿科研领域,正在中国科研界掀起一股热潮!
    的头像 发表于 12-15 12:39 528次阅读

    什么是强化学习

    强化学习是机器学习的方式之一,它与监督学习、无监督学习并列,是三种机器学习训练方法之一。 在围棋上击败世界第一李世石的 AlphaGo、在《
    的头像 发表于 10-30 11:36 3011次阅读
    什么是<b class='flag-5'>强化学习</b>

    基于双光学频率梳的生物传感器实现生物分子检测

    生物分子的快速、高灵敏度检测对于感染性病原体、生物标志物和污染物的生物传感非常重要。
    发表于 10-07 16:10 306次阅读
    基于双光学频率梳的<b class='flag-5'>生物传感器</b>实现<b class='flag-5'>生物</b><b class='flag-5'>分子</b>检测

    NeurIPS 2023 | 扩散模型解决多任务强化学习问题

    扩散模型(diffusion model)在 CV 领域甚至 NLP 领域都已经有了令人印象深刻的表现。最近的一些工作开始将 diffusion model 用于强化学习(RL)中来解决序列决策问题
    的头像 发表于 10-02 10:45 533次阅读
    NeurIPS 2023 | 扩散模型解决多任务<b class='flag-5'>强化学习</b>问题

    模拟矩阵在深度强化学习智能控制系统中的应用

    讯维模拟矩阵在深度强化学习智能控制系统中的应用主要是通过构建一个包含多种环境信息和动作空间的模拟矩阵,来模拟和预测深度强化学习智能控制系统在不同环境下的表现和效果,从而优化控制策略和提高系统的性能
    的头像 发表于 09-04 14:26 402次阅读
    模拟矩阵在深度<b class='flag-5'>强化学习</b>智能控制系统中的应用

    面向运动健康检测的柔性可穿戴手性逻辑门传感器

    手性是生命的基础,不同构型的手性分子具有迥异的生理活性,以氨基酸等为代表的手性分子主要以L-构型的形式在人体中发挥多样化功能。
    发表于 08-09 09:06 773次阅读
    面向运动健康检测的柔性可穿戴<b class='flag-5'>手性</b>逻辑门<b class='flag-5'>传感器</b>

    河北工大:激光写入多孔石墨烯泡沫,用于多路电化学汗液传感器

    传感新品 【河北工大:激光写入多孔石墨烯泡沫,用于多路电化学汗液传感器】 可穿戴电化学传感器提供了从生物液体中的生化标记物检测
    的头像 发表于 07-28 18:32 687次阅读
    河北工大:激光写入多孔石墨烯泡沫,用于多路电<b class='flag-5'>化学</b>汗液<b class='flag-5'>传感器</b>

    基于强化学习的目标检测算法案例

    摘要:基于强化学习的目标检测算法在检测过程中通常采用预定义搜索行为,其产生的候选区域形状和尺寸变化单一,导致目标检测精确度较低。为此,在基于深度强化学习的视觉目标检测算法基础上,提出联合回归与深度
    发表于 07-19 14:35 0次下载