电子发烧友网报道(文/黄山明)近日,LG Display向外媒透露,即将推出的电视将采用下一代OLED面板,该面板采用了微透镜阵列 (MLA) 技术用来提高屏幕亮度及可视角度,并且屏幕的分辨率达到4K级别。从LG方面所透露的数据来看,采用这一屏幕的电视亮度将达到2040nit,甚至将超过三星S95C的2000nit,成为全球最佳。
亮度的大幅提升主要归功于MLA技术,这是一项旨在从根本上提升OLED电视亮度的新技术,通过将数十亿个微型凸透镜放置在OLED面板的像素上,从而实现将亮度提升到比传统OLED屏幕高150%的程度,能源效率也提升了约22%。
具体来看,所谓微透镜阵列,便是由数个通光孔径及浮雕深度为微米级的微透镜按照特定的排列所组成的阵列。通过调整微透镜阵列中的形状、焦距、排布结构方式、占空比等,能够实现一定的光学功能,提高光学系统的集成度和性能。
有研究表明,采用相同口径且间隔一致的MLA时,在±40°的视角范围内,OLED的外量子提取效率显著增加,相邻微透镜的间隔越小,即微透镜的占空比越大,OLED的相对辐射光强越大,垂直OLED基底方向的光强也越大。
当微透镜紧密排列时,相同口径和间隔的微透镜阵列,蜂窝排列的微透镜占空比比正交排列的占空比大,因此,贴附蜂窝排列微透镜阵列的OLED,在垂直基底方向的辐射光强较大,与不贴附微透镜阵列时相比,最多可提高57%,而正交排列的微透镜阵列最多可提高50.3%。
与传统透镜相比,微透镜阵列由许多小透镜组成,每个小透镜都有自己的光轴,可以并行传输和变换光信号,而传统透镜通常只有一个光轴,只能串行地处理光信号。微透镜的优点在于能提高光学系统的集成度、性能和灵活性,缩小系统的体积和重量,降低成本和功耗。
MLA通常可以分为两种类型,非球面微透镜阵列与球面微透镜阵列。其中非球面微透镜阵列占市场主要份额,达到62.01%,球面阵列仅为37.99%。
目前微透镜阵列的主要生产地集中在日本和欧洲地区,而消费区域以亚太和欧洲为主。有数据显示,2019年全球MLA市场规模达到13亿元,预计到2026年将达到22亿元。不过随着LG、三星等厂商对MLA应用的推广,预计这一市场规模将进一步上涨。
2021年,LG Display便在OLED面板上应用氘技术,来将屏幕的亮度从800nit提升至1000nit以上,而今采用MLA技术不仅能进一步提升亮度,还可以延长面板的寿命。不过目前受到技术限制,微透镜阵列的制作工艺复杂,对精度要求高,也较容易受到环境因素的影响。
比如LG Display在首次使用MLA技术时便遇到了问题,使用MLA时会导致显示屏看起来不均匀或存在一些不均匀的“污点”。为了解决这一问题,LG Display将在生产中添加一种使用微珠扩散粘合剂,来消除由应用MLA所引起的污点问题。
扩散胶具有类似扩散板的效果,可以扩散来自LCD面板的LED背光单元的光,使屏幕颜色和亮度更均匀。目前这种扩散材料主要由日本Sumitomo生产,不过使用这种扩散材料也会导致成本的进一步上升。
未来,随着MLA技术的不断成熟,这一技术也将被应用于智能家居领域。并且由于MLA的特性,运用在OLED面板上不仅亮度有提升,同时能够显示得更清晰,不仅能够提升用户体验,加强产品竞争力,还能帮助企业将产品向高端化迈进。
亮度的大幅提升主要归功于MLA技术,这是一项旨在从根本上提升OLED电视亮度的新技术,通过将数十亿个微型凸透镜放置在OLED面板的像素上,从而实现将亮度提升到比传统OLED屏幕高150%的程度,能源效率也提升了约22%。
具体来看,所谓微透镜阵列,便是由数个通光孔径及浮雕深度为微米级的微透镜按照特定的排列所组成的阵列。通过调整微透镜阵列中的形状、焦距、排布结构方式、占空比等,能够实现一定的光学功能,提高光学系统的集成度和性能。
有研究表明,采用相同口径且间隔一致的MLA时,在±40°的视角范围内,OLED的外量子提取效率显著增加,相邻微透镜的间隔越小,即微透镜的占空比越大,OLED的相对辐射光强越大,垂直OLED基底方向的光强也越大。
当微透镜紧密排列时,相同口径和间隔的微透镜阵列,蜂窝排列的微透镜占空比比正交排列的占空比大,因此,贴附蜂窝排列微透镜阵列的OLED,在垂直基底方向的辐射光强较大,与不贴附微透镜阵列时相比,最多可提高57%,而正交排列的微透镜阵列最多可提高50.3%。
与传统透镜相比,微透镜阵列由许多小透镜组成,每个小透镜都有自己的光轴,可以并行传输和变换光信号,而传统透镜通常只有一个光轴,只能串行地处理光信号。微透镜的优点在于能提高光学系统的集成度、性能和灵活性,缩小系统的体积和重量,降低成本和功耗。
MLA通常可以分为两种类型,非球面微透镜阵列与球面微透镜阵列。其中非球面微透镜阵列占市场主要份额,达到62.01%,球面阵列仅为37.99%。
目前微透镜阵列的主要生产地集中在日本和欧洲地区,而消费区域以亚太和欧洲为主。有数据显示,2019年全球MLA市场规模达到13亿元,预计到2026年将达到22亿元。不过随着LG、三星等厂商对MLA应用的推广,预计这一市场规模将进一步上涨。
2021年,LG Display便在OLED面板上应用氘技术,来将屏幕的亮度从800nit提升至1000nit以上,而今采用MLA技术不仅能进一步提升亮度,还可以延长面板的寿命。不过目前受到技术限制,微透镜阵列的制作工艺复杂,对精度要求高,也较容易受到环境因素的影响。
比如LG Display在首次使用MLA技术时便遇到了问题,使用MLA时会导致显示屏看起来不均匀或存在一些不均匀的“污点”。为了解决这一问题,LG Display将在生产中添加一种使用微珠扩散粘合剂,来消除由应用MLA所引起的污点问题。
扩散胶具有类似扩散板的效果,可以扩散来自LCD面板的LED背光单元的光,使屏幕颜色和亮度更均匀。目前这种扩散材料主要由日本Sumitomo生产,不过使用这种扩散材料也会导致成本的进一步上升。
未来,随着MLA技术的不断成熟,这一技术也将被应用于智能家居领域。并且由于MLA的特性,运用在OLED面板上不仅亮度有提升,同时能够显示得更清晰,不仅能够提升用户体验,加强产品竞争力,还能帮助企业将产品向高端化迈进。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
OLED
+关注
关注
119文章
6226浏览量
225364 -
屏幕
+关注
关注
7文章
1203浏览量
56054 -
微透镜
+关注
关注
1文章
24浏览量
9141
发布评论请先 登录
相关推荐
VirtualLab Fusion案例:医用衍射透镜
技术方法是实现经典透镜精确快速建模和衍射透镜不同级次衍射效率计算的关键。
为了说明该软件在这方面的能力,在实例中分析了所设计混合透镜的近场和远场视图。此外,为了进一步优化光学函数,还研
发表于 01-23 10:28
微透镜阵列精准全检,优可测3D自动量测方案提效70%
微透镜阵列可实现许多传统光学元器件难以实现的特殊功能,应用广泛。某福州工厂需全检晶圆MLA产品,引入优可测NX230系列晶圆3D自动量测设备,实现高精度、高效率自动化检测,单颗透镜检测

微透镜阵列的高级模拟
摘要
微透镜阵列在数字投影仪、光学扩散器、三维成像等各种光学应用中得到越来越多的关注。VirtualLab Fusion允许应用一种先进的场跟踪算法,通过所谓的多通道概念来分析这样的数组元素。在本例
发表于 01-09 08:48
微透镜阵列后光传播的研究
1.摘要
随着光学投影系统和激光材料加工单元等现代技术的发展,对光学器件的专业化要求越来越高。微透镜阵列正是这些领域中一种常用元件。为了充分了解这些元件的光学特性,有必要对
发表于 01-08 08:56
眼内衍射透镜的设计与分析
实际二元结构的情况下对晶状体系统进行建模。通过改变二元结构的高度,我们进一步研究了衍射透镜的性能。
设计任务
模拟与设置: 单一平台的交互性
建模技术的单平台的交互性
光在系统中传播时会遇到
发表于 12-30 10:13
透镜成像原理及应用 透镜成像与光学镜头关系
透镜成像原理 透镜成像的原理基于光的折射。当光线从一个介质(如空气)进入另一个介质(如透镜材料)时,光线会发生折射,即改变方向。透镜的形状和
微透镜阵列在汽车投影灯中的应用
立刻出现欢迎光毯,而车门上则投影出车辆的标志或者你的名字,这一切都让你感到独特和个性化。融合这些梦幻又个性化的光学技术使科技与艺术得以完美结合,也带给我们全新的驾驶体验。而将驾驶体验推向一个全新的维度的技术之一正是源于仿生学中昆虫复眼结构的

什么是超透镜?超透镜的制造及其应用
1.什么是超透镜? 超透镜利用介电表面上的亚波长“超原子”图案来控制入射光。具体而言,超原子图案会改变入射光束的相位分布,从而导致光束弯曲(重定向)。超原子是微小的纳米级结构,具有不同的形状
LG OLED屏与三星Tizen系统结合,Loewe Stellar智能电视震撼登场
Stellar智能电视选用LG Display的WRGB OLED面板及微透镜阵列2.0(MLA 2.0),提供42英寸至83英寸多种尺寸选择,预计2024年中期还将推出97英寸版本。
什么是超透镜技术,它如何彻底改变光学?
超透镜是使用超表面来聚焦光线的平面透镜。超表面是指一种厚度小于波长的人工层状材料。超表面可实现对电磁波偏振、振幅、相位、极化方式、传播模式等特性的灵活有效调控。 超透镜技术
Coherent推出用于光束准直和耦合的全面微透镜阵列解决方案
近日,光学材料、器件和子系统领域的领导者Coherent宣布,推出用于光束准直和耦合的全面微透镜阵列(Micro Lens Array,MLA)解决方案。这种多功能平台解决了高速通信收发器(包括可
评论